基于改进谱减算法的水声通信信号检测方法

2020-08-31 01:39:48王大宇王志欣张光普
应用科技 2020年3期
关键词:谱估计环境噪声水声

王大宇,王志欣,张光普

1. 中国电子科技集团公司 第五十四研究所,河北 石家庄 050081 2. 哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001

近年来,水声通信技术应用日益广泛,对非合作水下通信信号的侦测已成为通信侦察领域的研究热点之一[1−3]。水声通信信号检测作为水声通信信号侦测的基础,受水声信道环境噪声影响,信号接收信噪比往往较低,导致信号检测概率低。如何实现低信噪比下水声通信信号的高概率检测,是本文研究的重点。

谱减法[4]以其计算简单、运算量小、便于实时处理等优点,被广泛应用于语音信号处理领域,是最常用的语音减噪方法。该算法利用语音与噪声不相关的特性,估计并消减噪声频谱,以增强语音信号。谱减法技术应用于水声通信信号检测,可抑制水声信道强背景噪声干扰,有效提高信号接收信噪比。

双滑窗检测法[5−6]是一种建立在时域上的突发信号检测算法,其判决门限只与信号接收信噪比有关,避免了信号检测过程中信道增益的影响。但该算法要实现较低的检测误差,需要较高的接收信噪比。

本文结合改进的谱减算法和双滑窗检测技术提出了一种水声通信信号检测方法。该方法能有效抑制水声信道强背景噪声干扰,实现水声通信信号的高概率检测,并且仿真结果验证了算法的有效性。

1 多窗谱估计的改进谱减法

传统谱减法采用周期图法进行谱估计,具有一定估计误差,使得消噪后的语音存在一定的“音乐噪声”,效果并不理想。1982 年Thomson[7]提出的多窗谱(multitaper spectrum)估计是一种比周期图法更准确的谱估计方法,该方法通过多个正交的数据窗分别对接收信号求直接谱,然后对获得的直接谱求平均以得到较小的估计方差。其定义如下:

式 中:L为 窗 个 数; Xmt为 第 k个 信 号 窗 的 谱;(ω)为

式中: x(n)为 信号序列; N 为信号长度; ak(n)为第k个数据窗函数,数据窗(Slepian 窗)是一组相互正交的离散椭球序列:

多窗谱估计的谱减法是传统谱减法的一种改进算法,在一定程度上解决了传统谱减算法“音乐噪声”大的问题[8]。其具体步骤如下:

1)设信号的时间序列为 x(n),加窗分帧处理后得到第 i帧 信号为 xi(m),相邻帧之间有重叠,帧长为 N。

2)对分帧处理后的信号进行 FFT变换,分别求其幅度谱|Xi(k)|和相位谱θi(k),并在相邻帧之间做平滑处理,得到平均幅度谱

以i帧为中心,前后各取K帧,共有 2K+1帧进行平均。

3)对 xi(m)进行多窗谱估计,得到其功率谱密度 P(k,i)。 其中 i表 示第 i帧 ; k 表 示第 k条谱线。

4)对获得的 P(k,i)在相邻帧之间进行平滑处理,得到平滑功率谱密度 Py(k,i):

以i帧为中心,前后各取K帧,共有 2K+1帧进行平均。

5)已知前序噪声有M帧,可以得到噪声的平均功率谱密度值 Pn(k):

式中: α为过减因子;β为增益补偿因子。

图1 所示为多窗谱估计的改进谱减法处理流程。

图1 多窗谱估计的改进谱减法处理流程

为验证多窗谱估计的改进谱减法效果,将该算法与传统谱减法进行了仿真对比,结果如图2所示。具体的仿真参数如下:采样率为96 kHz;所使用水声通信信号调制方式为QPSK;符号速率为4 000 sps;信号持续时间1 s;噪声为高斯白噪声;信噪比为−5 dB。

图2 改进谱减法与传统谱减法效果对比

仿真结果表明,传统谱减法减噪后信噪比为8.0 dB,信噪比提高了13 dB;改进谱减法减噪后信噪比为21.49 dB,信噪比提高了26.49 dB。可以看出,改进谱减法较传统谱减法具有更好的减噪效果,能获得更高的信噪比提升。

图4 双滑窗检测流程

2 双滑窗检测技术

双滑窗检测算法的基本原理是通过计算设置的2 个连续滑动窗口中的能量,计算2 个窗口的能量比值,得到检测的判决门限,进而获得信号的起止时刻,完成信号检测[9]。其原理框图如图3所示。

图3 双滑窗检测原理

通过逐点移位分析前后2 个窗内能量的差异,完成数据存储区内信号的搜索,记录检测到的每个信号的起始时刻、终止时刻及信号个数。图4 所示为双滑窗检测流程图。

假设接收信号的时间序列为 r(n), 则窗口 A、B的总能量以及判决变量 Mn分别为

式中 L为 窗口 A、 B的 窗长。将判决变量 Mn作为检测函数,采用判决门限进行 Mn峰值检测,以得到信号的起止时刻。在 Mn最大值位置处, a(n)等于信号和噪声的总能量, b(n)等于噪声的能量,因此Mn最大值点处的值为

可见,双滑窗检测其判决门限只与信号接收信噪比有关,避免了信号检测过程中信道增益的影响。

3 基于改进谱减算法的水声通信信号检测

针对传统双滑窗检测需要较高信噪比的需求,而水声信道环境噪声干扰严重,信号接收信噪比往往较低,导致传统双滑窗检测概率低的问题,我们将多窗谱估计的改进谱减法和双滑窗检测技术相结合,提出了一种水声通信信号检测算法。算法克服了传统双滑窗检测在低信噪比情况下检测概率低、负信噪比情况下无法检测的问题,在水声信道强干扰噪声条件下,仍可实现高概率、高准确率检测。

基于改进谱减算法的水声通信信号检测方法流程如图5 所示。其具体步骤如下:

图5 基于改进谱减算法的水声通信信号检测流程

1)对采集的水声信号进行预处理,主要包括去直流、归一化、带通滤波,得到滤波后的时域信号;

2)对滤波后的信号进行多窗谱估计的改进谱减法处理,得到减噪、增强后的水声信号;

3)对增强后的水声信号进行双滑窗检测,获取数据中信号个数和对应的信号起止时间,完成信号检测。

4 仿真验证

为验证算法在水声背景环境噪声下通信信号检测能力,首先对海洋环境噪声进行了模拟仿真;然后在模拟的海洋环境噪声条件下,仿真研究了水声通信信号分别在接收信噪比为−5、−10 dB情况下信号的检测效果,并与传统双滑窗检测进行了对比。具体仿真参数如下:采样率为96 kHz,信号调制方式为QPSK、2FSK,符号速率分别为4 000、500 sps,信号持续时间分别为1、0.5 s,噪声为模拟的海洋环境噪声。

海洋环境噪声的特点是在不同的频率处有不同的谱级响应,是多种源的综合效应,其中潮汐、波浪、海洋湍流、行船等产生的环境噪声均集中在低频部分,因此,海洋环境噪声在低频部分噪声源级较高,高频部分源级较低[10−11]。图6 所示为仿真的海洋环境噪声及其噪声谱,其噪声谱级相当于3 级海况。

图6 海洋环境噪声及噪声谱

图7、8 所示分别为接收信噪比为−5、−10 dB情况下信号检测结果。其中QPSK 调制信号处于0.5~1.5 s,持续时间1 s,2FSK 信号处于2~2.5 s,持续时间0.5 s。

由于信号接收信噪比分别为−5、−10 dB,均为负信噪比,直接经双滑窗检测已无法实现信号检测提取。经改进谱减法降噪后,−5 dB 情况下,QPSK 调制信号接收信噪比为23.94 dB,2FSK 调制信号接收信噪比为25.31 dB,双滑窗检测可实现信号准确检测,检测结果为QPSK 调制信号起止时间分别为0.494、1.501 s,2FSK 调制信号起止时间分别为1.992、2.513 s;−10 dB 情况下,QPSK调制信号接收信噪比为15.09 dB,2FSK 调制信号接收信噪比为19.85 dB,双滑窗检测可实现信号准确检测,检测结果为QPSK 调制信号起止时间分别为0.498 1.501 s,2FSK 调制信号起止时间分别为1.999、2.511 s。

图7 −5 dB 情况下信号检测结果

图8 −10 dB 情况下信号检测结果

5 结论

传统双滑窗检测在保证检测概率的需求下,需要较高信噪比支撑,而水声信号环境噪声干扰严重,接收到的水声通信信号信噪比往往较低,无法满足传统双滑窗检测的需求。通过借鉴语音信号处理中所使用的语音增强技术,将语音信号减噪中常用的谱减法与双滑窗检测相结合,实现了水声信道强背景噪声干扰条件下,水声通信信号的高概率检测,并对该算法进行了仿真实验。

1)仿真结果表明,在接收信噪比为−10 dB 的情况下,仍可实现水声通信信号的正确检测,验证了算法的有效性。

2)本文所提的水声通信信号检测方法可实现负信噪比下水声通信信号的检测,且算法实现简单,运算量少,便于实时实现,具有一定的实用价值。

后续需经过湖试、海试进一步验证优化算法性能,使其能够应用于水声通信信号的实时检测。

猜你喜欢
谱估计环境噪声水声
环境噪声智能检测终端设计
电子制作(2018年23期)2018-12-26 01:01:04
基于云服务的环境噪声智能监测系统研究
测控技术(2018年11期)2018-12-07 05:49:22
基于MATLAB实现的AR模型功率谱估计
认知水声通信系统中OFDM技术的应用
电子制作(2017年22期)2017-02-02 07:10:34
新型多功能水声应答器电子系统设计
电子制作(2017年19期)2017-02-02 07:08:28
FRFT在水声信道时延频移联合估计中的应用
南海某海域环境噪声与风速相关性研究*
铁路环境噪声测量中的问题分析
经典功率谱估计方法的研究
Welch谱估计的随机误差与置信度