组蛋白H1的研究进展

2020-08-28 09:45马佳琦刘鹏
江苏农业科学 2020年13期

马佳琦 刘鹏

摘要:核小体是染色质的基本结构单位,DNA缠绕在组蛋白八聚体外侧形成核小体。核小体的串珠结构在组蛋白H1的存在下形成紧密的30 nm染色质纤维。多种H1亚型的存在及其不同翻译后修饰揭示组蛋白H1功能的复杂性。本文综述了组蛋白H1的生物学功能,H1在表观修饰、基因转录和DNA复制方面的调控机制,并概括了H1翻译后修饰及其功能调控的研究进展,为H1的研究工作提供了参考。

关键词:组蛋白H1;表观遗传修饰;基因转录;翻译后修饰

中图分类号: Q811.4文献标志码: A文章编号:1002-1302(2020)13-0034-07

收稿日期:2020-01-20

基金项目:国家科技重大专项转基因生物新品种培育(编号:2018ZX08020003-003)。

作者简介:马佳琦(1995—),女,江苏靖江人,硕士研究生,主要从事表观遗传研究。E-mail:812730438@qq.com。

通信作者:刘鹏,博士,助理研究员,主要从事表观遗传研究。E-mail:pengliu@yzu.edu.cn。染色质是真核生物遗传物质的载体。核小体是染色质的基本结构单位,由组蛋白和DNA构成。组蛋白是染色质的基本结构蛋白,分别为H1、H2A、H2B、H3、H4,其中H1是最早发现的组蛋白,其余4种为核心组蛋白。组蛋白H2A、H2B、H3、H4各2个分子形成组蛋白八聚体,约147 bp DNA以左旋超螺旋方式缠绕在组蛋白八聚体构成的核心结构外,形成核小体[1-3]。组蛋白H1不构成核小体,而是将DNA与核小体紧扣在一起。作為染色体的基本结构蛋白,组蛋白H1在表观调控、基因转录、DNA复制、DNA损伤修复、染色体重塑等方面发挥重要作用。本文将重点介绍组蛋白H1主要生物学功能及其发生的翻译后修饰。

1组蛋白H1变体

1.1动物中H1亚型

组蛋白H1有多个变体。在人和小鼠中已经鉴定出了11种变体,包括7种体细胞亚型H1.0、H1.1、H1.2、H1.3、H1.4、H1.5、H1X,3种睾丸特异性亚型H1t、H1T2、HILS1和1种卵母细胞特异性亚型H1oo[4-5]。体细胞中H1.1-H1.5的表达依赖于DNA复制,而H1.0和H1X不依赖于DNA复制并且可以在非增殖细胞中表达[6]。H1.0则主要富集在已分化的细胞中[7]。在两栖动物和禽类生物中,H1.0(在鸟类中称为H5)主要富集在高度浓缩的惰性染色质中。在鸟类等红细胞中的H5变体与哺乳动物中组蛋白H1.0具有较高同源性,鸡红细胞中H5占总H1含量的60%[8]。果蝇的幼虫和成体中最初只发现1个H1变体。而后,鉴定出1个具有较长的氨基端的H1变体,命名为dBigH1,主要在胚胎发育初期表达[9]。dBigH1由单个基因编码,为研究组蛋白功能提供了便利。

1.2植物中H1亚型

目前,在拟南芥中仅鉴定出3个组蛋白H1亚型H1.1、H1.2、H1.3[10-12]。这3个组蛋白H1富集度都与H3K4me3负相关,但相比较组蛋白H1.1、H1.2,组蛋白H1.3与H3K4me3的负相关程度低于H1.1和H1.2。H3K4me3修饰水平越高,H1.3表达水平越高;而与H3K4me3修饰相反,H3K9me2修饰水平越高,H1.3表达水平越低[13]。组蛋白H1.1和H1.2有85%的序列同源性,而H1.3与H1.1和H1.2基因的同源性较低。H1.3在脱落酸诱导时表达[11,14]。

2组蛋白H1结构

组蛋白H1分子由1个中央球状结构域(globular domain)和氨基端结构域(amino-terminal domain)、羧基端结构域(carboxy-terminal domain)构成。在不同物种中氨基端和羧基端结构域序列变化较大,中央球状结构域序列在所有H1变体中是高度保守的,这个结构是H1与核小体结合必需的[15-17]。在低等真核四膜虫中组蛋白H1只包含1个羧基端尾巴[18]。

3组蛋白H1的生物学功能

3.1H1与核心组蛋白表观修饰

真核生物通过核心组蛋白的翻译后修饰和DNA甲基化来动态调控表观修饰水平。组蛋白H1在基因组中分布并不是均一的,其分布受基因组环境的影响。试验表明,在活跃转录基因的启动子区,当H3K4me3等激活性组蛋白修饰富集,则组蛋白H1水平骤减。在异染色质或非转录区H1富集程度增加,抑制性组蛋白修饰水平也会同时增加,如H3K9me和H3K27me。因此,组蛋白H1调控核心组蛋白的翻译后修饰状态[19-21]。

研究发现,H1富集度与核心组蛋白的低乙酰化修饰紧密相关。H1通过负调控组蛋白乙酰转移酶抑制组蛋白乙酰化[22]。人类中p300/CBP相关因子(p300/CBP-associated factor,PCAF)具有乙酰转移酶活性,组蛋白H1的羧基端结构域会阻碍PCAF与组蛋白H3接近,从而抑制组蛋白H3发生乙酰化修饰。在果蝇中,H1对于维持雌性生殖细胞的干细胞是必需的。通常H1抑制乙酰转移酶MOF活性,MOF可特异识别乙酰化H4K16位点,当H1减少时H4K16ac水平增加,导致雌性生殖细胞干细胞过早分化[23]。此外,组蛋白去乙酰化酶也参与调控这一过程。人类中组蛋白去乙酰化酶Sirtuin 1可使H4K16、H3K9、H1K26位点发生去乙酰化,维持H1富集状态,同时H3K79me2修饰水平降低[24]。

H1参与调控抑制转座元件活性。在果蝇生殖细胞中,转座元件在转录和翻译后水平受piRNAs(PIWI-interacting RNAs)调控,piRNAs与PIWI蛋白结合形成复合物,伴随H3K9发生甲基化,抑制转座子转录。进一步发现PIWI蛋白和H1发生相互作用,并招募异染色质蛋白(heterochromatin protein 1,HP1),实现异染色质化。PIWI蛋白减少会导致转座元件附近的H1含量减少,使转座元件去抑制[25]。尽管这一过程需要H1、H3K9me和HP1共同参与,然而H1减少后,靶位点染色质开放程度增加,H3K9me3修饰在这些位点的富集度不变,另一方面HP1的缺失不影响H1分布[25]。

H1也会影响另一个组蛋白抑制标记H3K27me。体外试验发现,当存在H1的寡聚核小体时,PRC2-EZH2(enhancer of zeste 2)复合体可使H3K27甲基化。这是由于H1和hPRC2复合物中的SUZ12、EED和AEBP2组分相互作用导致的[26]。人的H1.2优先结合发生H3K27me3修饰的核小体,同时H3K27me3也会增加H1.2水平[27]。因此,H1和H3K27me3修饰之间形成一个正反馈环,二者共同维持染色质沉默状态[27]。

DNA甲基化也是真核生物中一个重要的表观遗传标志[28]。在哺乳动物和植物中均发现H1与DNA甲基化密切联系。在拟南芥中H1敲减突变体不能正常发育,这与DNA低甲基化突变体表型相似[29]。在小鼠ES细胞中,H1减少显著影响某些区域DNA甲基化水平,特别在印记基因H19和Meg3的印记控制区呈现低甲基化[12]。在H1敲减的ES细胞中H1水平得到恢复后,印记基因H19和Meg3的甲基化水平相应的提高,从而抑制其基因表达[20]。由此推测H1调控在特异位点发生的DNA甲基化。多个H1亚型直接与DNA甲基转移酶DNMT1和DNMT3B相互作用,将DNA甲基转移酶招募到印记控制区。此外H1还参与调控X染色体连锁的Hox基因簇[30]。H1减少的小鼠ES细胞中细胞分化受到影响,是因为全能性基因Oct4的表达受到抑制[31]。小鼠ES细胞中H1敲减实验表明H1促进调控区域发生DNA甲基化,尤其是在增强子区域[32]。H1调控DNA甲基化对疾病机理研究来说也是非常重要的。例如,在淋巴B细胞中,观察到编码H1的基因发生突变,阻止了H1与DNMT3B的相互作用[33]。

3.2H1与基因表达

不同组蛋白H1亚型调控特定基因表达水平的上调和下调。在早期研究中,Shen等证明H1调控四膜虫中的特定基因的表达[18]。Hashimoto等在鸡细胞中建立H1敲除细胞系,敲除了所有的6种H1亚型,发现多种基因的表达受到影响,主要是基因表达水平下调[34]。在果蝇中,H1基因RNAi材料中发现H1减少后影响异染色区的基因表达,H1也是维持转座因子沉默所必需的[35]。Skoultchi等发现,在小鼠中,单个H1亚型的减少可以影响位置效应斑(position effect variegation)和基因表达[36]。在小鼠ES细胞中同时敲除3个H1亚型后,H1总含量降低50%,而只有极少数特异性基因上调或下调,证明H1精准调控基因表达[37]。Sancho等在T47D乳腺癌细胞系中,用shRNA(short hairpin RNA)技术分别靶向沉默H1.0、H1.2、H1.3、H1.4或H1.5亚型,发现特定H1亚型的减少会影响不同基因的表达[38]。这种方法能够快速沉默单个H1亚型,避免了由于常规基因敲除引起的剂量补偿效应;然而,在shRNA沉默材料中可能存在低水平的目标蛋白[38]。

组蛋白H1还参与调控特定基因表达的模型。构建受激素诱导的小鼠MMTV(mouse mammary tumor virus)启动子表达体系,最初发现在激素诱导条件下H1位置发生变化[39]。随后研究发现,在激素诱导发生之前,H1就存在并有效促进转录[40]。事实上,H1发生磷酸化后与MMTV启动子的结合使染色质构象发生改变,新的结构易于激素受体和转录因子结合[41-42]。

Kim等发现H1.2招募E3泛素连接酶cullin 4A(CUL4A)将H4K31位点泛素化,促进靶基因区组蛋白修饰激活标记H3K4me3和H3K79me2水平增加,从而增强靶基因转录[43]。H1.2选择性识别RNA聚合酶Pol Ⅱ磷酸化位点Ser2,招募PAF1(RNA PolⅡ associated factor 1)和CUL4A,在特定位点维持活跃转录状态[43]。

H1也与抑制特定基因有关。例如,H1参与干扰素应答基因的调控[44]。H1与转录抑制因子形成复合物。与抑制性染色质状态相关的Msx1(Msh homeobox 1)蛋白,是肌肉细胞分化负调控因子,也是HP1蛋白的负调节因子。小鼠中Msx1将组蛋白H1b招募到MyoD(myogenic differentiation D)基因的关键调控元件区,从而呈现抑制性染色质状态,抑制肌肉细胞分化[45]。

3.3H1与DNA复制

DNA复制中染色质结构进行重塑,组蛋白H1在DNA复制中发挥重要作用[46]。利用HeLa细胞提取物在体外重新构建SV40 DNA复制体系,发现当反应中H1与核心组蛋白的摩尔比大于1时,H1显著减少SV40复制[47]。从处于细胞周期不同阶段的细胞中提取H1用于体外实验,发现来源于G0期和M期细胞的H1可以强烈抑制SV40 DNA复制,这可能与周期特异的H1翻译后修饰有关[48]。不同的H1变体抑制DNA复制能力不同,这取决于H1羧基端结构,也与H1变体结合染色质亲和力相关[49-50]。

果蝇幼虫中发现H1调控核内复制。果蝇中H1是SUUR(protein suppressor of underreplication)蛋白的上游效应子[51]。在染色质延迟复制区,H1招募SUUR蛋白到多线染色体的异染色质区,阻遏复制叉前移,导致复制效率降低,异染色质区基因拷贝数减少。核内复制时H1在多线染色体上呈现出动态的时间分布。在S期,H1富集在延迟复制的位点上。在多头绒泡菌(Physarum polycephalum)中也发现H1是复制过程中的重要调控因子,H1缺失会阻碍延迟复制进程[52]。

3.4H1與DNA损伤修复、基因组稳定

组蛋白H1含量的减少直接影响染色质结构,从而影响DNA损伤修复和基因组稳定性。HHO1是酿酒酵母(S. cerevisiae)H1的同系物,抑制同源重组影响DNA修复[53]。H1抑制果蝇基因组中转座元件活性,H1缺失后导致基因组不稳定[19,35]。在果蝇幼虫成虫盘和唾液腺细胞中H1敲除引发过度重组和基因组重排,从而积累了源于rDNA的环状DNA。果蝇H1减少会导致全基因组范围DNA双链断裂的频率增加[19]。

组蛋白H1与DNA修复机制中多个组分及DNA损伤应答因子之间发生相互作用。在人类中,E2泛素结合酶UBE2N(也称UBC13)将H1泛素化,E3泛素连接酶RNF168识别泛素化的H1,导致在DSBs(double-stranded DNA breaks)处Lys63位泛素化修饰,从而招募DNA修复因子结合。人H1.0与Ku86、Ku70相互作用,而Ku86和Ku70形成二聚體与DSBs结合,它们的相互作用是非同源末端连接DNA修复所必需的[54]。

3.5H1与早期胚胎形成

研究发现存在在生殖细胞特异表达的H1。果蝇H1变体dBigH1在生殖细胞和在胚胎发育最初几小时期间表达,在细胞化开始后它被体细胞dH1取代。dBigH1对早期胚胎发育至关重要,防止早熟的合子基因组激活[9]。在非洲爪蟾的卵子中发现母系表达B4蛋白是主要的连接组蛋白,在胚囊期被体细胞H1取代[55]。B4有利于开放染色质的形成,并导致依赖ATP的染色质重塑[56]。哺乳动物的卵母细胞中特异性组蛋白H1oo持续表达直至双细胞胚胎末期[57]。延长H1oo的表达导致多能性标记基因的延长表达,并阻止细胞分化[58]。

4组蛋白H1的翻译后修饰

组蛋白H1的氨基端或羧基端结构域经过翻译后修饰发挥其生物学功能。

4.1H1磷酸化

早在20世纪70年代就发现了组蛋白H1磷酸化。到目前为止,对H1磷酸化研究较为充分[59]。组蛋白H1磷酸化主要发生在其羧基端特定的基序,这些基序能被细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)识别。H1磷酸化修饰参与DNA复制过程。H1磷酸化水平随细胞周期变化[60-64],在G1期水平最低,在S期和G2期升高并在有丝分裂时达到最高,在末期急剧下降[62,65-66]。Talasz等发现,H1.5中Ser残基磷酸化发生在G1期和S期,Thr磷酸化主要发生在有丝分裂期[62]。在有丝分裂中,CDK1/CycB(Cyclin B)主要负责H1磷酸化,但也有其他激酶参与。研究表明组蛋白H1本身是中期染色体凝聚所必需的[67],同时在有丝分裂细胞中诱导H1发生去磷酸化导致染色体去凝聚化[66,68]。

H1磷酸化也参与基因转录过程。H1磷酸化后,H1与染色质间结合减弱,有利于活性启动子区域去除H1[41-42,69]。Vicent等发现磷酸化的H1参与调控受激素诱导的小鼠MMTV启动子表达[69]。Zheng等在人类HeLaS3细胞中确定了3个磷酸化位点H1.2 S173p、H1.4 S172p、H1.4 S187p,这些磷酸化定位在核仁中。通过ChIP(chromatin immunoprecipitation)实验表明H1.4 S187磷酸化富集在活性rRNA启动子区及激素应答元件区,证明H1磷酸化参与调控RNA PolⅠ和RNA PolⅡ介导的转录[70]。

组蛋白H1磷酸化及其对染色质结合的影响也与DNA损伤修复相关。研究证实H1磷酸化的状态确实可以指示DNA损伤程度[71]。发生低程度DNA损伤,只有少量H1分子磷酸化并从染色质中释放出来,致使染色质解凝,从而允许修复损伤蛋白结合。如果DNA发生严重损伤,那么更多的H1被磷酸化并从染色质释放出来,暗示DNA损伤已经超出可修复的范围。Roque等分析了当H1与DNA结合时,H1的羧基端发生部分磷酸化和完全磷酸化对其二级结构的影响,发现磷酸化水平会影响羧基端的α螺旋、β结构以及无结构区域的比例,表明依赖磷酸化水平的结构重排[72],并且H1部分磷酸化损害了其凝聚染色质的能力[73]。因此,不同位点的H1磷酸化引起染色质的结构变化,进而影响染色质高级结构形成[72-73]。

4.2H1甲基化

在原生动物Euglena gracilisl中首次发现了H1赖氨酸甲基化[74]。组蛋白H1甲基化主要发生在其氨基端。H1.4的氨基端K26位点甲基化是人类H1发生最多的甲基化位点[75],K26位点甲基化在脊椎动物中是保守的[76]。在哺乳动物细胞中,PRC2-EZH2和G9a甲基转移酶催化H1.4 K26甲基化,赖氨酸去甲基化酶JMJD2/KDM4催化其去甲基化[77-78]。H1.4 K26甲基化为HP1和L3MBTL1结合提供了基础,这2种蛋白在异染色质形成中具有重要作用[79-80]。

4.3H1乙酰化

H1乙酰化发生在氨基端、羧基端和球状区域。球状结构域中的乙酰化位点大多直接参与DNA结合[81]。核心组蛋白乙酰化通常与开放染色质和活跃转录有关。H1乙酰化位点可直接影响H1与DNA结合,并导致H1位置发生改变。如果用组蛋白去乙酰化酶的抑制剂处理,一般难以区分H1乙酰化与核心组蛋白乙酰化[24,82]。

H1的氨基端发生的乙酰化参与转录调控。实验证实组蛋白乙酰转移酶GCN5(general control of amino acid synthesis 5)乙酰化H1.4 K34位点,招募转录因子TFⅡD(transcription factor ⅡD)的亚基TAF1,致使H1与染色质的结合能力降低,从而激活转录。H1.4 K34乙酰化在活跃转录的启动子处富集[83]。

4.4H1泛素化

在2000年,Pham和Sauer发现在果蝇中存在由TAFⅡ250诱导的H1单泛素化[84]。TAFⅡ2 50是转录因子TFⅡD的一个亚基,参与基因转录。当TFⅡD失活时,组蛋白H1泛素化水平和基因表达水平均降低。果蝇中发现H1的3个位点K23、K27、K165均可泛素化[85]。小鼠HRF(+)细胞中观察到,H1.5单泛素化对于HIV-1抗性产生很重要[86]。

4.5其他H1翻译后修饰

H1还有其他各种翻译后修饰,包括瓜氨酸化、甲酰化、脱硝、ADP-核糖基化、巴豆酰化等,但它们的功能仍有待阐明。

5总结

过去数十年间,组蛋白H1的研究取得了实质性进展。一方面,作为染色质重要的结构蛋白,H1各种变体以不同方式与核小体结合稳定核小体结构,从而形成多样的染色质高级结构。另一方面,H1作为染色質中重要的调控蛋白,通过与其他蛋白相互作用而发挥生物学功能。科学家将从更多的方面探索H1特性和功能,借助结构生物学方法揭示不同物种中的H1在染色质结构组织的特点及表观修饰存在下H1如何调控染色质高级结构的变化,利用反向遗传学方法从不同H1亚型突变体材料着手研究H1调控通路的分子机制。

参考文献:

[1]Olins A L,Olins D E. Spheroid chromatin units (ν bodies)[J]. Science,1974(4122):330-332.

[2]Kornberg R D. Chromatin structure:a repeating unit of histones and DNA[J]. Science,1974,184(4139):868-871.

[3]Kornberg R D,Thonmas J O. Chromatin structure:oligomers of the histones[J]. Science, 1974,184(4139):865-868.

[4]Izzo A,Kamieniarz K,Schneider R. The histone H1 family:specific members,specific functions?[J]. Biological Chemistry,2008,389(4):333-343.

[5]Parseghian M H,Hamkalo B A. A compendium of the histone H1 family of somatic subtypes:an elusive cast of characters and their characteristics[J]. Biochemistry & Cell Biology,2001,79(3):289-304.

[6]Happel N,Warneboldt J,HNecke K,et al. H1 subtype expression during cell proliferation and growth arrest[J]. Cell Cycle,2009,8(14):2226-2232.

[7]Zlatanova J,Doenecke D. Histone H1 zero:a major player in cell differentiation?[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology,1994,8(15):1260.

[8]Bates D L,Thomas J O. Histories H1 and H5:one or two molecules per nucleosome?[J]. Nucleic Acids Research,1981,9(22):5883-5894.

[9]Pérezmontero S,Carbonell A,Morán T,et al. The embryonic linker histone H1 variant of Drosophila,dbigH1,regulates zygotic genome activation[J]. Developmental Cell,2013,26(6):578-590.

[10]Gantt J S,Lenvik T R. Arabidopsis Thaliana H1 histones. Analysis of two members of a small gene family[J]. European Journal of Biochemistry,1992,202(3):1029-1039.

[11]Ascenzi R,Gantt J S. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana[J]. Plant Molecular Biology,1999,41(2):159-169.

[12]Fan Y,Nikitina T,Zhao J,et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation[J]. Cell,2005,123(7):1199-1212.

[13]Rutowicz K,Puzio M,Halibart-Puzio J,et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis[J]. Plant Physiology,2015,169(3):2080-2101.

[14]Ascenzi R A,Gantt J S. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants[J]. Plant Molecular Biology,1997,34(4):629-641.

[15]Ramakrishnan V,Finch J T,Graziano V,et al. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding[J]. Nature,1993,362(6417):219-223.

[16]Zhou B R,Jiang J,Feng H,et al. Structural mechanisms of nucleosome recognition by linker histones[J]. Molecular Cell,2015,59(4):628-638.

[17]Zhou B R,Feng H,Ghirlando R,et al. A small number of residues can determine if linker histones are bound on or off dyad in the chromatosome[J]. Journal of Molecular Biology,2016:S0022283616303308.

[18]Shen X,Gorovsky M A. Linker histone H1 regulates specific gene expression but not global transcription in vivo[J]. Cell,1996,86(3):475-483.

[19]Lu X W,Wontakal S N,Kavi H,et al. Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9[J]. Science,2013,340(6128):78-81.

[20]Yang S M,Kim B J,Norwood Toro L,et al. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation[J]. Proceedings of the National Academy of Sciences,2013,110(5):1708-1713.

[21]Stützer A,Liokatis S,Kiesel A,et al. Modulations of DNA contacts by linker histones and post-translational modifications determine the mobility and modifiability of nucleosomal H3 tails[J]. Molecular Cell,2016:S1097276515009715.

[22]Herrera J E,West K L,Schiltz R L,et al. Histone H1 is a specific repressor of core histone acetylation in chromatin[J]. Molecular & Cellular Biology,2000,20(2):523-529.

[23]Jin S,Wei H M,Jiang X,et al. Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation[J]. Nature Communications,2015,6:8856.

[24]Vaquero A,Scher M,Lee D,et al. Human Sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Molecular Cell,2004,16(1):93-105.

[25]Iwasaki Y W,Murano K,Ishizu H,et al. Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons[J]. Molecular Cell,2016,63(3):408-419.

[26]Martin C,Cao R,Zhang Y. Substrate preferences of the EZH2 histone methyltransferase complex[J]. Journal of Biological Chemistry,2006,281(13):8365-8370.

[27]Kim J M,Kim K,Punj V,et al. Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3[J]. Scientific Reports,2015,5(1):16714.

[28]Du J,Johnson L M,Jacobsen S E,et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nature Reviews Molecular Cell Biology,2015,16(9):519-532.

[29]Wierzbicki T A. Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation[J]. Genetics,2005,169(2):997-1008.

[30]Maclean J A,Bettegowda A,Kim B J,et al. The Rhox homeobox gene cluster is imprinted and selectively targeted for regulation by histone H1 and DNA methylation[J]. Molecular & Cellular Biology,2011,31(6):1275-1287.

[31]Zhang Y,Cooke M,Panjwani S,et al. Histone H1 depletion impairs embryonic stem cell differentiation[J]. PLoS Genetics,2012,8(5):e1002691.

[32]Geeven G,Zhu Y,Kim B J,et al. Local compartment changes and regulatory landscape alterations in histone H1-depleted cells[J]. Genome Biology,2015,16(1):289.

[33]Li H,Kaminski M S,Li Y,et al. Mutations in linker histone genes HIST1H1 b,c,d,and e; OCT2 (pou2f2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma[J]. Blood,2014,123(10):1487-1498.

[34]Hashimoto H,Takami Y,Sonoda E,et al. Histone H1 null vertebrate cells exhibit altered nucleosome architecture[J]. Nucleic Acids Research,2010(11):11.

[35]Olivera V,Katrin Z,Alejandro V,et al. Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity[J]. Nucleic Acids Research,2012(12):12.

[36]Lu X,Wontakal S N,Emelyanov A V,et al. Linker histone H1 is essential for Drosophila development,the establishment of pericentric heterochromatin,and a normal polytene chromosome structure[J]. Genes & Development,2009,23(4):452-465.

[37]Alami R,Fan Y,Pack S,et al. Mammalian linker-histone subtypes differentially affect gene expression in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5920-5925.

[38]Sancho M,Diani E,Beato M,et al. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth[J]. PLoS Genetics,2008,4(10):e1000227.

[39]Bresnick E H,Michael B,Veronique M,et al. The transcriptionally-active mmtv promoter is depleted of histone H1[J]. Nucleic Acids Research,1992(2):2.

[40]Akash G,Brown D T. Overproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter[J]. Nucleic Acids Research,1999(16):16.

[41]Koop,R. Histone H1 enhances synergistic activation of the mmtv promoter in chromatin[J]. EMBO Journal,2003,22(3):588-599.

[42]Belikov S,Astrand C,Wrange O. Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo[J]. Molecular & Cellular Biology,2007,27(6):2398-2410.

[43]Kim K,Lee B,Kim J,et al. Linker histone H1.2 cooperates with CUL4a and PAF1 to drive H4K31 Ubiquitylation-mediated transactivation[J]. Cell Reports,2013,5(6):1690-1703.

[44]Shinichi K,Kyosuke N. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone taf-i[J]. Nucleic Acids Research,2014(12):12.

[45]Lee H. Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis[J]. Science,2004,304(5677):1675-1678.

[46]Flickinger R A. Possible role of H1 histone in replication timing[J]. Development Growth & Differentiation,2014,57(1):1-9.

[47]Halmer L,Gruss C. Influence of histone H1 on the in vitro replication of DNA and chromatin[J]. Nucleic Acids Research,1995,23(5):773-778.

[48]Halmer L. Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication[J]. Nucleic Acids Research,1996,24(8):1420-1427.

[49]Lu Z H,Sittman D B,Romanowski P,et al. Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin[J]. 1998,9(5):1163.

[50]De S,Brown D T,Lu Z H,et al. Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains[J]. Gene,2002,292(1/2):173-181.

[51]Andreyeva E N,Bernardo T J,Kolesnikova T D,et al. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila[J]. Genes& Development,2017,31(6):603-616.

[52]Thiriet C,Hayes J J. Linker histone phosphorylation regulates global timing of replication origin firing[J]. Journal of Biological Chemistry,2008,284(5):2823-2829.

[53]Downs J A,Kosmidou E,Morgan A,et al. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone[J]. Molecular Cell,2003,11(6):0-1692.

[54]Kalashnikova A A,Winkler D D,Mcbryant S J,et al. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus[J]. Nucleic Acids Research,2013,41(7):4026-4035.

[55]Dworkin-Rastl E,Kandolf H,Smith R C. The maternal histone H1 variant,H1M (B4 protein),is the predominant H1 histone in Xenopus pregastrula embryos[J]. Developmental Biology,1994,161(2):0-439.

[56]Saeki H,Ohsumi K,Aihara H,et al. Linker histone variants control chromatin dynamics during early embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(16):5697-5702.

[57]Tanaka M. H1foo is coupled to the initiation of oocytic growth[J]. Biology of Reproduction,2004,72(1):135-142.

[58]Hayakawa K,Ohgane J,Tanaka S,et al. Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency[J]. Epigenetics Official Journal of the DNA Methylation Society,2012,7(9):1029-1036.

[59]Roth S Y,Allis C D. Chromatin condensation:Does histone H1 dephosphorylation play a role?[J]. Trends in Biochemical Sciences,1992,17(3):93-8.

[60]Porto R M,Amino R,Elias M C Q,et al. Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi[J]. Molecular & Biochemical Parasitology,2002,119(2):265-71.

[61]Yamshita M,Fukada S,Yoshikuni M,et al. M-phase-specific histone H1 kinase in fish oocytes:purification,components and biochemical properties [J]. Eur J Biochem,1992,205(2):537-543.

[62]Talasz H,Helliger W,Puschendorf B,et al. In vivo phosphorylation of histone H1 variants during the cell cycle[J]. Biochemistry,1996,35(6):1761-1767.

[63]Gutiyama L M. Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis[J]. Eukaryotic Cell,2008,7(4):560.

[64]Baatout S,Derradji H. About histone H1 phosphorylation during mitosis[J]. Cell Biochemistry & Function,2010,24(2):93-94.

[65]Gréen A,Sarg B,Gréen H,et al. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells[J]. Epigenetics & Chromatin,2011,4(1):15.

[66]Gurley L R,Valdez J G,Buchanan J S. Characterization of the mitotic specific phosphorylation site of histone h1. Absence of a consensus sequence for the P34CDC2/Cyclin b kinase[J]. Journal of Biological Chemistry,1995,270(46):27653-27660.

[67]Maresca J T. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts[J]. Journal of Cell Biology,2005,169(6):859-869.

[68]Thng J P,Guo X W,Swank R A,et al. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation[J]. Journal of Biological Chemistry,1994,269(13):9568.

[69]Vicent G P,Nacht A S,Font-Mateu J,et al. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation[J]. Genes&Development,2011,25(8):845-862.

[70]Zheng Y,John S,Pesavento J J,et al. Histone H1 phosphorylation is associated with transcription by RNA polymerases Ⅰ and Ⅱ[J]. Journal of Cell Biology,2010,189(3):407-415.

[71]Chubb J E,Rea S. Core and linker histone modifications involved in the DNA damage response[J]. Subcell Biochem,2010,50:17-42.

[72]Roque A,Iloro I,Ponte I,et al. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1[J]. Journal of Biological Chemistry,2005,280(37):32141-32147.

[73]Rita L,Bettina S,Herbert L,et al. Linker histone partial phosphorylation:Effects on secondary structure and chromatin condensation[J]. Nucleic Acids Research,2015(9):9.

[74]Tuck M T,Farooqui J Z,Paik W K. Two histone H1-specific protein-lysine n-methyltransferases from Euglena gracilis. Purification and characterization[J]. Journal of Biological Chemistry,1985,260(11):7114.

[75]Lu A,Zougman A,PudeKo M,et al. Mapping of lysine monomethylation of linker histones in human breast and its cancer[J]. Journal of Proteome Research,2009,8(9):4207-4215.

[76]Deterding L J,Bunger M K,Banks G C,et al. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 isoforms upon CDK inhibitor treatment using mass spectrometry[J]. Journal of Proteome Research,2008,7(6):2368-2379.

[77]Kuzmichev A,Jenuwein T,Tempst P,et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3[J]. Molecular Cell,2004,14(2):0-193.

[78]Ohe Y,Hayashi H,Iwai K. Human spleen histone H1. Isolation and amino acid sequence of a main variant,H1b[J]. Journal of Biochemistry,1986,100(2):359-368.

[79]Daujat S,Zeissler U,Waldmann T,et al. HP1 binds specifically to Lys26-methylated histone H1.4,whereas simultaneous Ser27 phosphorylation blocks HP1 binding[J]. Journal of Biological Chemistry,2005,280(45):38090-38095.

[80]Trojer P,Zhang J,Yonezawa M,et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM proteins[J]. Journal of Biological Chemistry,2009,284(13):8395-8405.

[81]Wisniewski J R,Zougman A,Kruger S,et al. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations,methylations,and phosphorylation as well as differences between cell culture and tissue[J]. Molecular & Cellular Proteomics,2006,6(1):72-87.

[82]Terme J M,Millán-Ario L,Mayor R,et al. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications[J]. FEBS Letters,2014,588(14):2353-2362.

[83]Kamieniarz K,Izzo A,Dundr M,et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation[J]. Genes&Development,2012,26(8):797-802.

[84]Pham A D,Sauer F. Ubiquitin-activating/conjugating activity of TAFII250,a mediator of activation of gene expression in Drosophila[J]. Science,2000,289(5488):2357-2360.

[85]Bonet-Costa C,Vilaseca M,Diema C,et al. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1[J]. Journal of Proteomics,2012,75(13):4124-4138.

[86]Lesner A,Kartvelishvili A,Lesniak J,et al. Monoubiquitinated histone H1b is required for antiviral protection in CD4+T cells resistant to HIV-1[J]. Biochemistry,2004,43(51):16203-16211.