(河南省驻马店市遂平县职业教育中心,河南 驻马店 463100)
应该说,我们的中学数学教学是一种“目标教学”。加强中学数学建模教学正是在这种教学现状下提出来的。我国普通高中新的数学教学大纲中也明确提出要“切实培养学生解决实际问题的能力”要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。”这些要求不仅符合数学本身发展的需要,更是社会发展的需要。我们的数学教学不仅要使学生获得新的知识,更要提高学生的思维能力,更要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,造就一代具有探索新知识,新方法的创造性思维能力的新人。
著名数学家怀特海曾说:“ 数学就是对于模式的研究”。
所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。
具体的讲数学模型方法的操作程序大致为:
为了培养学生的建模意识,我们数学教师应先提高自己的建模意识。数学教师除需要了解数学科学的发展历史和发展动态之外,还需要断地学习新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。
数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。我们认为培养学生创造性思维的过程有三点基本要求。第一、对周围的事物要有积极的态度;第二、要敢于提出问题;第三、善于联想,善于理论联系实际。
众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。
例:证明 sin5o+sin77o+sin149o+sin221o+sin293o=0。
分析:此题若作为“三角”问题来处理,当然也可以证出来,但从题中的数量特征来看,发现这些角都依次相差72°,联想到正五边形的内角关系,由此构造一个正五边形(如图)
这里,正五边形作为建模的对象恰到好处地体现了题中角度的数量特征。反映了学生敏锐的观察能力与想象能力。如果没有一定的建模训练,是很难“创造”出如此简洁、优美地证明的。
构建建模意识,培养学生的转换能力。
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
学生对问题的进步研究,无疑会激发其学习数学的主动性,且能开拓学生创造性思维能力,养成善于发现问题,独立思考问题的习惯。只要我们在教学中教师仔细观察,精心设计,可以把一些较为抽象的问题,造出最基本的数学模型,使问题回到己知的数学知识领域,培养学生的创新能力。
综上所述,在数学教学中构建学生的数学建模意识与素质教学所要求的培养学生的创造性思维能力是相辅相成,密不可分的。要真正培养学生的创新能力,光凭传授知识是远远不够的,重要的是在教学中必须坚持以学生为主体,我们的一切教学活动以调动学生的主观能动性,培养学生的创新思维为出发点,引导学生自主活动,自觉的在学习过程中构建数学建模意识,只有这样才能使学生分析和解决问题的能力得到长足的进步,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学。我们相信,在开展“目标教学”的同时,大力渗透“建模教学”必将为中学数学课堂教学改革提供一条新路,也必将为培养更多更好的“创造型”人才提供一个全新的舞台。