王俊力
何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:
1、作为数学科学的空间几何
(1)是一个完整的知识体系
(2)是一种论证几何,或称之为证明几何
(3)是存在于严密的公理体系之中的
2、作为小学数学课程的空间几何
(1)是几何学中最基础的部分
(2)是一种直观几何,或称之为经验几何、实验几何
(3)是存在于不太严密的局部组织之中的
明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:
一、小学几何学习的基本分析
(一)、小学数学几何学习的基本内容:
也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。
(二)、小学数学几何学习的基本目标:
1、从活动的特征表述
(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;
(2)能描述出实物或图形的运动和变化;
(3)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。
2、从内容的特征表述
(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)
(2)使学生能建立有关长度、面积或体积等的基本概念
(3)能够对不太远的物体间的方位、距离和大小有较正确的估计
(4)能从较复杂的图形中辨别有各种特征的图形
(三)、小学数学几何学习的基本特点:
1、经验是儿童几何学习的起点
儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。
2、操作是儿童构建空间表象的主要形式
儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,兒童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。
二、儿童形成空间观念的基本特征
1、水平0阶段(前认知阶段)
(1)直线和曲线(线能区分)
(2)正方形和平行四边形(面不能区分)
2、水平1阶段(直观化阶段)
(1)四边形和三角形(能从边的数量上去区分)
(2)正方形和菱形(不能从角的特征上去区分)
(3)长方形和长方体(不能区分面和体)
3、水平2阶段(描述/分析阶段)
(1)长方形、四边形、三角形(不同分类方法代表不同水平)
(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)
4、水平3阶段(抽象/关联阶段)
(1)平行四边形剪拼成长方形
(2)三角形拼成平行四边形
(3)长方形与长方体(能区分面和体)
三、小学几何教学的主要策略
(一)注重儿童的生活经验
(1)利用操作体验来获得对象形状特征的认识
比如《三角形的分类》可以给定学生一些不同形状的三角形,让学生按自己的理解去分类,而不同的分类就显示着他们对对象形体特征的表征。
(2)利用已经建立的有关图形形体经验帮助概括图形的性质
比如学习平行四边形和梯形时,是在学生学习了长方形、正方形之后的,学生自然会按分析长方形、正方形的方法,从边、角的方面去分析它们的特征。
(二)观察对象的形体特征是基础
比如长方体中有一种特殊的是有两个面是正方形的,让学生凭空去想象其余四个面有什么关系是十分困难的,必须通过实物的观察,让学生明白它的宽和高相等,因此其余四个面是大小完全相等的,从而获得性质,得出结论。
(三)强化动手操作
(1)搭建活动
我在上《立体图形的整理和复习》时,让学生通过“搭一搭”帮助学生思考在立方体每个面都打一个直穿洞口的长方体,使学生较好地理解被挖掉的有7个小立方体。
(2)实物操作活动
在学习圆锥的体积公式时,必须让学生通过实物操作,发现等底等高的圆柱和圆锥之间的关系,从而得出圆锥体积计算公式。
(3)测量活动
《三角形的内角和》一课,学生最初提出的验证三角形内角和是否为180度的方法都是量一量的方法,这个测量活动也是很有必要的,只有引发认知冲突,才会更深入地解决“误差”的问题,更好地引出剪拼、折叠的方法。
发展儿童的空间想像能力是小学几何学习的重要任务,而丰富的想像是发展学生空间想像力的有效方式,空间想像力不仅包括对方位、立体图形的想像,还应该包括对平面表示的三维图形的透视能力,以及对图形的再造、组合或分解能力。
在《小学数学图形与几何》的教学中动手实践、自主探索与合作交流是学生学习数学的重要方式。在合作中进行学习,体验合作学习的必要性和乐趣。同时在相互交流中,不断培养学生的参与意识,通过与他人的交流,感受不同的思维方式和思维过程,学会用不同的方式思考问题,尝试不同的探索方式,不断提高思维水平。