东营凹陷平方王-平南潜山下古生界碳酸盐岩储层成因及分布模式

2020-07-01 08:11操应长远光辉王艳忠昝念民
关键词:储集潜山碳酸盐岩

程 鑫, 操应长,2, 远光辉,2, 王艳忠,2, 昝念民

(1.中国石油大学(华东)深层油气重点实验室,山东青岛 266580;2.海洋矿产资源评价与探测技术国家功能实验室,山东青岛 266071)

碳酸盐岩潜山油气藏是渤海湾盆地重要的油气勘探领域,20世纪70年代济阳坳陷义和庄凸起沾11井奥陶系灰岩中获得的千吨高产油流掀起了渤海湾盆地碳酸盐岩潜山勘探热潮[1-2],相继在中—上元古界及下古生界中发现了冀中坳陷的任丘潜山、黄骅坳陷的千米桥潜山、济阳坳陷的广饶潜山、桩西潜山、孤岛潜山等[3-4]。由于早期潜山成藏认识的局限性,潜山勘探以碳酸盐岩潜山风化壳为主,随着老油区勘探程度不断加深,勘探难度加大,潜山勘探进入缓慢发现阶段[2-4]。冀中坳陷牛东1潜山、苏桥潜山、文安潜山、长洋淀潜山、黄骅坳陷埕海潜山以及济阳坳陷富台潜山等内幕油气藏的相继发现使渤海湾盆地潜山油气勘探进入一个新的阶段[1-3,5-12]。深层碳酸盐岩储集性能是决定深潜山能否成藏并富集的主要控制因素[6,10,13],前人研究表明渤海湾盆地下古生界内幕储层储集空间包括溶蚀孔洞、裂缝以及白云石晶间孔等[1,3,5,9],但与古风化壳型储层相比,碳酸盐岩潜山内幕储层更难识别,且储层的形成受到多种因素控制,这些都加大了对潜山内幕油气藏的勘探难度[9]。受潜山内幕勘探程度的限制,对内幕储层主控因素的分析也相对笼统,因此选取典型实例进行系统分析,将对类似油藏的勘探提供一定的借鉴意义。东营凹陷西部的平方王-平南地区是区内重要的潜山发育带,在平方王潜山寒武系和平南潜山奥陶系分别获得探明石油地质储量57×104t和443×104t。区内潜山顶部油藏及潜山内幕油藏均有发育,其内幕油藏呈多层系层状—准层状分布的特点。对于该潜山带的早期研究多集中于油藏特征、储集空间类型的描述以及成藏模式的总结[14-15]。近年来随着对储层成因及分布的重视,李继岩及王永诗等[3,16]对区内碳酸盐岩潜山内幕储层的主控因素以及热液活动对储层的改造作用进行了较精细的研究。然而仍缺乏各潜山之间、潜山内部(潜山顶部与潜山内幕)储集及成因差异性的系统对比。为深入研究平方王-平南地区下古生界碳酸盐岩潜山储层成因及其分布模式,笔者利用大量岩心、镜下薄片鉴定及分析测试资料并结合前人研究成果,在储集空间类型研究的基础上,明确储集空间的纵向变化及分带性,结合区域构造、埋藏演化,明确储层形成机制,建立储层分布模式。

1 地质背景

东营凹陷是基岩古地形背景上发育起来的断-拗盆地,其古生代以来的构造演化可以划分为古生代稳定升降,三叠纪至早、中侏罗的褶皱隆升,晚侏罗至白垩的初步断陷,新生代早期的裂陷-扩张阶段以及新生代晚期整体拗陷5个阶段[17]。受北东和北西向断裂作用的影响,西部地区形成了北东向的青城凸起-于家庄-平南-滨县-陈家庄和北西的草桥-纯化-平方王-林樊家2个方向上的潜山带[14]。

平方王-平南油田位于北东-北西断裂带的交汇处,高青-平南断层的上升盘,在多期构造应力转换叠加作用的控制下,研究区形成了北西、北东向、近东西向等多组断裂体系(图1(a),侵入体范围参考文献[3])。研究区南临博兴生油洼陷,东临利津洼陷,距油源区近,油气资源充足[3,14],而下古生界碳酸盐岩为主的巨厚海相沉积以及后期多期构造运动的叠加改造为潜山储层的发育奠定了基础(图1(b)、(c))。前人对整个华北区域的构造演化研究表明,下古生界沉积后,中奥陶世末的加里东运动使整个华北地台抬升,下古生界遭受了长约140~150 Ma的风化淋滤,在全区形成大规模的岩溶储层[18-20];而随后印支期、燕山期以及喜山期的改造作用则使其进一步复杂化。

高青-平南主干断层于中生代末期开始活动,古近纪活动最为强烈,新近纪活动逐渐减弱,期间伴随有多期岩浆侵入与喷发事件[21-22],受断裂控制,在寒武系内形成大量岩浆岩侵入体(图1(a)、(c))。该潜山带可以划分为北部的平方王潜山和南部的平南潜山两部分,其中平方王潜山以残丘山为主(图2(a)、(b)),平南潜山主要为断块山(图2(c)、(d),剖面(a)~(d)分别对应于图1中剖面线①~④)。

2 储集空间类型及储集系统划分

2.1 储集物性

平方王-平南下古生界碳酸盐岩物性分布范围较广,孔隙度分布在0.3%~28.1%,渗透率分布在(0.006~8 012.07)×10-3μm2,储层孔-渗相关性一般。储层物性整体偏低,60%以上的储层孔隙度小于2%,70%以上的储层渗透率小于1×10-3μm2;在相对致密的背景下发育了部分孔-渗性较高的储层(图3)。

图2 平方王-平南地区典型油藏剖面Fig.2 Typical reservoir profiles in Pingfangwang-Pingnan buried hills

图3 平方王-平南潜山下古生界碳酸盐岩储层物性分布Fig.3 Petrophysical properties of lower Paleozoic carbonate reservoirs in Pingfangwang-Pingnan buried hills

2.2 储集空间类型

研究区下古生界碳酸盐岩储集空间以次生成因为主,可分为孔、洞和裂缝两种类型。孔、洞包括角砾间孔、洞(图4(a)~(c))、角砾内溶孔(图4(c))、白云石晶间孔(图4(d)~(e))和沿裂缝分布的针状孔(图4(f));裂缝包括开启的风化破裂缝、构造缝(图4(f)~(h))及压溶缝(图4(i))。其中角砾间孔、洞多为角砾间未被碎屑及胶结物完全充填的残留孔、洞;白云石晶间孔多为白云石晶体或晶间方解石胶结物溶蚀形成,这些孔隙常沿裂缝分布,且孔隙内常见部分未被完全溶蚀的晶体残留(图4(d)~(e));沿裂缝发育的针状孔多为裂缝内胶结物或部分围岩溶蚀形成,也可视为开启缝的一部分;而开启的裂缝则为裂缝被胶结物不完全充填或早期形成的脉体后期遭到溶蚀(图4(h))的结果。

图4 平方王-平南潜山下古生界碳酸盐岩储集空间类型Fig.4 Reservoir spaces of lower Paleozoic carbonate reservoirs in Pingfangwang-Pingnan buried hills

2.3 储集系统划分

系统分析不同潜山带储集空间的纵向变化发现,无论是平方王地区的残丘山还是平南地区的断块山,在纵向上都展现出一定的分带性,形成不同的储集系统。残丘山顶部储层以角砾间孔、洞和角砾内及基质溶蚀孔、洞为主,同时裂缝较为发育,形成孔-洞-缝复合型储集系统,这一系统多分布在距顶部不整合面150 m范围内;在此带以下,角砾间孔、洞鲜有发育,储集空间以构造裂缝为主,并见部分沿裂缝发育的溶孔或裂缝扩溶的现象,形成孔-缝型储集系统(图5)。

平南地区的断块山展现出与残丘山类似的分带性,在潜山顶部同样可见角砾间孔、洞,同时裂缝大量发育,而在下部则发育多层以裂缝为主的储层,并伴生有部分溶蚀孔隙,从而由上向下形成孔-洞-缝复合型和孔-缝型2种储集系统(图6)。虽然两类潜山具有相似的分带性,但其成因却有所不同。

3 储层成因

综合岩心观察、薄片鉴定、物性分析,并结合地球化学资料、生产动态资料、潜山地层结构以及研究区构造演化史分析表明,表生岩溶、断裂活动以及岩浆侵入等的共同作用造成了研究区储层复杂的分布特征。

图5 残丘型潜山储集系统分析(平方王潜山)Fig.5 Reservoir system analysis of monadnock buried hill(Pingfangwang buried hills)

3.1 表生岩溶作用

表生岩溶作用对于储层的强烈改造作用已经得到学者们的认可,并被广泛应用到潜山油气藏的勘探中。表生岩溶作用会造成储层在垂向上形成明显的分带性(表层带、垂直渗流带、潜流带、深部缓流带)(图7(a),根据参考文献[29],有修改),且大气水淋滤作用以及岩溶过程中黏土等碎屑物质的充填会使岩石内Fe、Mn、Zn等成分的相对富集[23-28],而岩溶作用的强度会随距不整合面距离的增加逐渐降低。由典型井滨古9井储层的垂向变化(图5)可以看出,其顶部岩溶孔、洞、缝以及角砾极为发育,向下其含量降低,逐渐变为以裂缝为主的储层;与此同时其储集物性也呈现出逐渐降低的趋势;元素地球化学方面,由ICP-AES得到的12个原岩及2个碎屑充填角砾岩样品的元素数据可知,岩石内Fe、Mn、Zn含量明显在不整合面附近富集,呈现最高值,而在远离不整合处其含量降低,表明表生岩溶作用的效应逐渐减弱。

图6 断块型潜山储集系统分析(平南潜山)Fig.6 Reservoir system analysis of fault block buried hill(Pingnan buried hills)

然而表生溶蚀作用的影响不仅体现在其纵向变化上,细致分析不同潜山的地层结构以及储层特征可以发现,不同潜山带之间在表生岩溶期次上存在差异。长期以来加里东期构造运动导致的抬升剥蚀是最受关注的一期岩溶作用。但对比平方王和平南两个潜山带的剖面(图2)可以看出,平方王潜山下古生界上覆地层为新生界,而平南潜山下古生界与上古生界直接接触,这表明后期构造演化的差异使平方王潜山在加里东期表生岩溶后发生过二次暴露,发育晚期岩溶,而平南潜山下古生界地层则一直处于埋藏环境中。结合区域构造演化分析,晚期岩溶应该发生在燕山晚期至喜山早期之间。晚期岩溶作用可以对早期岩溶形成的储层进行溶蚀改造,甚至可能形成新的岩溶系统,有利于储层的保存;而一直处于埋藏条件下的早期表生岩溶储层则更有可能在埋藏条件下遭到胶结破坏。对比两种类型潜山近不整合面的岩溶角砾岩可以发现,经历过晚期岩溶的储层角砾岩内孔、洞发育,而未发生二次暴露的储层角砾岩相对致密胶结(图7(b))。为进一步排除断裂活动、埋藏溶蚀等其他作用的影响,鉴于研究区断层控制下有效构造裂缝发育的范围为400 m[16],且表生岩溶作用范围多在150 m范围内,故选取两类潜山距离断层大于400 m,且距离顶部不整合小于150 m的储层进行物性对比,可以看出前者发育大量孔隙度大于5%,渗透率大于1×10-3μm2的储层,孔隙度和渗透率平均值分别可达8.29%和143.73×10-3μm2;而后者以孔隙度小于5%,渗透率小于1×10-3μm2的储层为主。由此可知在远离断层条件下,表生岩溶期次的不同将导致两类潜山在潜山顶部储集性能存在差异。

图7 表生岩溶作用对储层的影响Fig.7 Effect of epikarst on reservoirs

3.2 断裂破碎及深部溶蚀作用

断裂则是控制碳酸盐岩潜山优质储层分布的另外一种重要的地质作用。一方面断裂活动过程中,在地应力的作用下可使原岩破碎角砾化,并在断裂附近派生次一级的小断层及裂缝,使周围储层裂缝密度增加,改善储集性能;另一方面断层及其伴生裂缝可作为热液流体及有机酸向储层运移的通道,从而促进早期岩溶储层及裂缝周边岩石深部溶蚀作用的进行,这一方面李继岩和王永诗等[3,16]已从岩相学和地球化学方面进行了详细的论证。

断裂对附近地质体的影响随着距断层距离的增加而逐渐减弱,根据破碎强度,断裂带附近的地质体可依次划分为滑动破碎带、诱导裂缝带和未破碎围岩带[30](图8(a),根据参考文献[30],有修改)。对断块型潜山典型井滨古26井(图2(d)、6、8(b))的分析可以看出,该井恰好钻遇断裂面,其在纵向上明显展现出顶部角砾岩发育而下部以发育裂缝为主的特征;对于上部的角砾岩,可通过以下两点特征证明其为断裂活动形成,而非表生岩溶作用形成:①次圆状角砾杂乱堆积,无明显粒序,且角砾间通常无泥质等碎屑物质充填,表明其与表生岩溶作用的渗流及地下河搬运无关;②在角砾内常可见多组脉体,且这些脉体都局限于角砾内,并未贯穿到周围基质(图8(b)),这表明脉体形成于角砾形成之前,由于在早期表生岩溶作用前区域未发生明显构造运动,因此这些角砾并非在早期岩溶作用中形成,应为原岩经历多期构造运动后又经断裂破碎作用形成。此外热液作用还会使碳酸盐岩中Fe、Mn等元素更为富集[15,31-32]。综合分析该潜山储集物性、储集空间类型、裂缝密度以及岩石地球化学特征的纵向变化(图6)可以看出,在断块山的中上部,随距断面距离的增加,其储集性能及岩体内Fe、Mn含量呈降低趋势,表明断层活动及相关热液影响逐渐减弱。

图8 断裂作用对储层的影响Fig.8 Effect of faulting on reservoirs

3.3 岩浆侵入作用

表生岩溶作用、断裂破碎以及相关深部溶蚀对储层的改造作用是显而易见的,然而分析两类潜山储集物性、裂缝密度以及相关地球化学特征的纵向变化可以看出,在平方王残丘山以及平南断块山的底部,都出现了储集物性、裂缝密度和Fe、Mn、Zn含量再次增大的现象(图5、6)。这显然无法用表生岩溶及断层作用的影响来解释,因为二者的作用都是随着距不整合面或断面距离的增加而减弱的。仔细观察可发现,这些底部的物性高值区都靠近岩浆侵入体,正是这些岩浆岩的侵入作用使底部储层物性得到改善。在岩浆向浅层运动过程中, 由于热流体释放膨胀和机械贯入作用产生的初始异常高压对围岩产生挤压冲击作用,其结果是引发围岩发生塑性形变或是脆性破裂(图9(a),根据参考文献[33],有修改)[33-35];与此同时,岩浆侵入过程中伴随的大量热液会沿裂缝形成一系列针状溶孔。为了进一步证实岩浆侵入对于储层形成的正面效应,并排除表生岩溶作用及断层的影响,选取距离不整合面大于150 m且距离断层大于400 m的储层,分析其物性及产能与距侵入体距离之间的关系,可以发现储集物性以及产能都随距侵入体距离的增加呈现降低的趋势(图9(b))。当储层距离岩浆岩侵入体小于50 m时,有一半以上的储层孔隙度大于2%,接近1/3的储层渗透率大于1×10-3μm2,孔隙度及渗透率平均值分别可达2.68%、2.37×10-3μm2,且展现出较好的产能(平均日产油5.99 t,日产气0.03 m3,日产水23.29 m3);当距离增加到50~100 m时,虽然孔隙度有所下降,全部分布在2%以下,但保持了较高的渗透率(平均为2.31×10-3μm2)和产能(平均日产水14.2 m3),略有下降;然而当距离增加到100 m以上时,其物性和产能全部显著降低,平均孔隙度和渗透率分别只有0.68%和0.24×10-3μm2,多为干层。由此可见岩浆侵入所引发的围岩破裂和溶蚀效应随距侵入体距离的增加逐渐减弱,在侵入体50 m范围内储集性能得到显著改善;距离在50~100 m时仍起到一定作用,但相对减弱;当距离大于100 m时对储层基本无影响。

图9 岩浆侵入体对储层的影响Fig.9 Effect of magma intrusion on reservoirs

4 储层分布模式

平方王-平南下古生界碳酸盐岩油气藏复杂的分布特征是表生岩溶、断层以及岩浆侵入等共同作用的结果。对于平方王地区以残丘山为主的潜山而言,由于经过加里东期及燕山—喜山期两期表生岩溶,多期表生岩溶的叠加使岩溶孔、洞、缝得以较好的保存,从而形成潜山顶部油气藏。而在内幕区岩浆侵入作用使得侵入体附近的围岩破裂形成裂缝,伴随而来的热液流体可使裂缝附近岩石发生部分溶蚀,从而形成以裂缝为主,溶蚀孔为辅的孔-缝型储层(图10(a))。

对于平南地区断块型为主的潜山而言,由于只经历了加里东期表生岩溶,其岩溶孔、洞发生相对较强烈的胶结充填作用,仅残留部分孔、洞和裂缝;中生代末—新生代基底断层活动以及热液、有机酸溶蚀使围岩发生改造,形成断裂带内孔-洞-缝复合储集体以及其附近诱导裂缝带内的孔-缝型储集系统;而岩浆侵入作用则同样在潜山底部形成以裂缝为主,溶蚀孔为辅的孔-缝型储层。3种作用相互叠加,在潜山不同部位形成不同的储集特征。潜山顶部为表生岩溶及断裂破碎共同作用,形成孔、洞、缝均较发育的储层,而在下部以诱导裂缝带为主或为诱导裂缝带与岩浆侵入作用的叠加,形成孔-缝型储层。与此同时,一些泥质含量较高或页岩较为发育的层段,其裂缝及溶孔发育较差,可以作为内幕油层的盖层,从而形成了内幕油藏呈层状分布的特点(图10(b))。

图10 平方王-平南地区下古生界储层分布模式Fig.10 Distribution model of lower Paleozoic carbonate reservoirs in Pingfangwang-Pingnan area

5 结 论

(1)东营凹陷平方王-平南潜山下古生界碳酸盐岩储层储集空间以次生孔、洞和裂缝为主,可以分为角砾间孔洞、角砾内溶孔、白云石晶间孔和沿裂缝分布的针状孔、风化破裂缝、构造缝及压溶缝等;其储集空间分布具有明显的分带性,潜山顶部为孔-洞-缝复合型储集系统,下部为裂缝为主,溶蚀孔为辅的孔-缝型储集系统。

(2)表生岩溶、断裂、岩浆侵入以及相伴生的深部溶蚀共同作用造成了研究区内储层复杂的成因及分布,并且不同潜山带或不同类型潜山间储层成因有差异。平方王地区的残丘山加里东期及燕山—喜山期两期表生岩溶叠加,形成了潜山顶部孔-洞-缝型储层,而在潜山底部岩浆侵入引发的裂缝及溶蚀孔形成了潜山内幕孔-缝型储集体;而对于平南地区的断块山而言,断裂破碎作用或断裂破碎作用与加里东期表生岩溶相互叠加在潜山顶部形成孔-洞-缝复合型储层,而在下部则以诱导裂缝带及岩浆侵入形成的裂缝为主导,并伴生部分溶蚀孔,形成内幕孔-缝型储层。

猜你喜欢
储集潜山碳酸盐岩
辽河坳陷西部凹陷潜山油气输导体系特征
大牛地气田奥陶系碳酸盐岩元素录井特征分析
安徽潜山:“田管家”授技术
古皖之源,“皖”美潜山
四川江油市马头山地区三叠系碳酸盐岩地热资源特征
湖北远安区块上奥陶系五峰组-下志留系龙马溪组页岩气成藏条件分析
探讨页岩油气储集空间差异及赋存方式
摘柿子
海域天然气水合物成藏地质条件浅析
裂缝性碳酸盐岩微细观组构及力学性能研究