陈蕾蕾 宋宁 谢俊霞
[摘要] 帕金森病(PD)是以黑质区多巴胺能神经元选择性丢失为特征的第二大神经退行性疾病。越来越多的研究證实,黑质区铁沉积是多巴胺能神经元退行病变的重要因素。铁死亡是2012年首次报道的一种铁依赖性的新型细胞死亡形式,目前铁死亡在PD中的研究还非常有限。本文从铁跨脑区转运、细胞内铁代谢、自噬-溶酶体途径和泛素-蛋白酶体系统等几个方面综述了PD中铁异常沉积的最新机制研究进展,以及铁死亡与PD之间的可能联系,以期为阐明铁参与多巴胺能神经元的退变提供前沿性理论基础。
[关键词] 帕金森病;铁;神经变性疾病;多巴胺能神经元;综述
[中图分类号] R742.5;R591.1 [文献标志码] A [文章编号] 2096-5532(2020)02-0127-06
doi:10.11712/jms.2096-5532.2020.56.102 [开放科学(资源服务)标识码(OSID)]
[网络出版] http://kns.cnki.net/kcms/detail/37.1517.r.20200521.1516.001.html;2020-05-22 11:11
[ABSTRACT] Parkinsons disease (PD) is the second most common neurodegenerative disease in clinical practice and is cha-racterized by selective loss of dopaminergic neurons in the substantia nigra. More and more studies have revealed that iron deposition in the substantia nigra is an important factor for the degeneration of dopaminergic neurons. Ferroptosis is a new form of iron-dependent cell death that was first reported in 2012; however, the research on ferroptosis in PD is still limited. This article reviews the latest research advances in abnormal iron deposition in PD from the aspects of transregional brain iron transport, intracellular iron metabolism, autophagy-lysosomal pathway, and ubiquitin-proteasome system, as well as the potential relationship between ferroptosis and PD, in order to provide a theoretical basis for clarifying the involvement of iron deposition in the degeneration of dopaminergic neurons.
[KEY WORDS] Parkinson disease; iron; neurodegenerative diseases; dopaminergic neurons; review
帕金森病(PD)是一种多发于中老年的中枢神经系统退行性疾病,其病理学特征表现为中脑黑质致密带多巴胺能神经元的选择性丢失[1]。目前我国有超过270万的PD病人,预计到2030年将激增至500万,占全世界PD病人总数的50%以上[2-4],该病的高患病率和高致残率给社会造成了沉重的负担。黑质区铁沉积是多巴胺能神经元退行病变的一种重要因素[5],但是PD中铁异常沉积的原因尚未完全阐明。本文将从铁跨脑区转运、细胞内铁代谢、自噬-溶酶体途径和泛素-蛋白酶体系统等几个方面综述PD中铁异常沉积的最新研究进展,以及铁死亡[6]与PD之间的可能联系。
1 黑质区铁沉积与PD
在中枢神经系统,铁不但是众多酶的辅助因子,参与蛋白质的合成、DNA的复制和膜蛋白的构筑等,还参与髓鞘和神经递质的合成。虽然铁必不可少,但是过量的铁则会通过Fenton反应促使过氧化物降解而产生大量羟自由基,进而造成细胞死亡。在正常生理条件下,铁会随着年龄的增加沉积于黑质、尾状核和苍白球等脑区,但是这种现象在PD中尤为严重[7]。PD病人尸检结果证实,黑质区铁含量增高超过30%甚至更高[8]。磁共振成像显示,PD病人脑内铁沉积早于临床症状发生,而且PD进程及其运动功能障碍均与铁水平相关[9-10]。定量磁敏感检测显示,在特发性快速眼动睡眠行为障碍病人双侧黑质出现明显铁沉积,提示异常的铁沉积可能是加速神经退行性疾病前驱期向临床期转化的重要原因[11]。在PD病人和动物模型中,铁选择性地沉积于黑质区,而且铁离子螯合剂可起到明显的神经保护作用[12]。
1.1 铁跨脑区转运
铁虽然广泛存在于脑的各个部位,但是其在各个脑区的分布并不均匀。最近,朱心红等[13]报道,铁离子在各脑区之间沿神经投射进行运输,有两条铁离子转运途径:从腹侧海马(vHip)到内侧前额叶皮质(mPFC)再到黑质(SN),以及从丘脑(Tha)到杏仁核(AMG)再到mPFC。铁在不同脑区之间的转运依赖于神经元的活动,当神经元活动增多时,通过轴突转出的铁增多。作为目前已知唯一的跨膜铁转出蛋白,ferroprotin 1(FPN1)在轴突末梢的表达是铁跨轴突转运的必要条件。研究还证实了vHip-mPFC-SN的铁离子转运途径异常与运动障碍相关,是焦虑发生的关键环节[13]。更有趣的是,转运至黑质区的铁似乎并不再向其他脑区转出,而是作为“蓄铁池”将脑区过多的铁储存下来。在前期研究中,我们课题组应用电感耦合等离子体质谱法(ICP-MS),在PD、阿尔茨海默症(AD)病人和同龄正常人的尸检颞叶皮质组织中,分别检测了铁、锰、镍以及铜等4种金属元素含量,结果显示,PD病人颞叶皮质铁水平明显下降,而锰、镍以及铜等水平则无明显变化;而AD病人的4种金属元素均无明显变化[14]。提示PD病人颞叶皮质和黑质脑区之间可能存在铁的重新分布。这些证据提示,PD中黑质区铁沉积也可能来自于脑区间的铁离子异常转运。
1.2 细胞内铁代谢
细胞内的铁代谢过程主要包括铁储存、铁摄取和铁转出,而参与上述过程的某些蛋白功能紊乱则会导致铁代谢异常,从而引起铁沉积[8]。放射免疫实验检测显示,PD病人的铁蛋白(ferritin)水平在黑质区显著下降[15],提示PD病人储铁能力下降。二价金属离子转运体(DMT1)是非转铁蛋白结合铁(NTBI)的主要转运工具,在PD病人和动物模型的黑质区,DMT1的表达明显增加,提示PD黑质区DMT1介导的脑内NTBI摄取可能增多[8]。NMDA受体激活、ATP-敏感钾通道激活以及DMT1本身的亚硝基化,均可以增强DMT1的摄铁功能而加重细胞内的铁沉积[16-19]。同时,铁转出蛋白FPN1的表达降低引起铁转出减少,也被认为与PD黑质区的铁沉积有关[20-21]。研究发现,PD病人脑脊液和血浆中的铜蓝蛋白水平明显降低;敲除铜蓝蛋白和肝素后,小鼠脑内出现明显的铁沉积[22],提示铜蓝蛋白和肝素作为铁氧化酶通过协助FPN1介导的铁转出从而参与脑铁代谢。近年来,淀粉样前体蛋白(APP)也被发现具有铁氧化酶活性[23],其在膜转运过程中受到tau蛋白的调节。在PD病人和MPTP模型小鼠中,可溶性tau水平降低,使得APP的亚铁氧化酶活性下降,从而与FPN1协同作用使铁转运至细胞外的能力下降[24]。
铁调节蛋白(IRPs)是铁代谢相关蛋白转录后调节的最重要的因素。神经毒素、氧化应激、促炎因子、NMDA受体激活以及蛋白激酶C途径的激活,均可能作用于细胞内铁代谢的这个关键环节[8,16,25-26];在IRP2基因敲除小鼠中,铁大量沉积在黑质区,多巴胺能神经元死亡,动物出现PD类似的运动症状[27]。另外,铁调素在细胞铁代谢中也发挥着举足轻重的作用。作为一种抗菌肽,铁调素能够被炎症激活,建立了铁代谢和炎症之间的紧密联系[28-29]。研究显示,铁调素在脑细胞中对TfR1和DMT1有调控作用[30-31]。我们的研究也证实,铁调素在星形胶质细胞处于高铁和细胞外α-突触核蛋白共存环境时表达明显下降,这可能易化了星形胶质细胞的铁转出过程,代表了一种对周围神经元的不利状态[32]。目前尚无研究报道铁调素在PD黑质区的变化,但在接受深部脑刺激的PD病人血清中,铁调素的前体形式水平明显升高[33]。
1.3 自噬-溶酶体途径
自噬-溶酶体途径和泛素-蛋白酶体不但是降解受损细胞器和长寿命蛋白聚合物(如Alpha-突触核蛋白),维持细胞内环境平衡的主要途径,它们还在细胞内的铁代谢过程中发挥着重要作用[34-36]。在正常的生理条件下,自噬-溶酶体途径通过降解含铁物质以及囊泡传输而促进细胞内的铁循环[40]。溶酶体是细胞内重要的储铁细胞器,它通过自噬降解含铁物质(比如铁蛋白、含铁丰富的线粒体蛋白等)将铁释放至胞浆。由于其酸性和还原性环境,溶酶体内的铁通常以还原活性Fe2+存在。目前的研究表明,溶酶体中的铁释放至胞浆主要与以下几种通道相关[37]。①DMT1:DMT1主要位于早期或晚期的内吞体。当铁通过Tf-TfR途径转运时,内吞体内的铁主要通过DMT1释放至胞浆。②黏蛋白1(TRPML1)和天然抗性相关巨噬细胞蛋白1(NRAMP1):TRPML1主要位于晚期内吞体和溶酶体膜。当铁来源于溶酶体降解Tf-Fe复合物和含铁物质时,溶酶体内的铁主要通过TRPML1和NRAMP1的通道释放至胞浆[37-39]。当然,DMT1和TRPML1介导的铁释放机制可能在某些细胞(如神经元)上共存。在同时表达DMT1和TRPML1的细胞上,当DMT1介导的内吞体铁释放被抑制时,溶酶体释放铁的过程并没有被显著影响,提示TRPML1介导的铁释放功能可保证内吞体的铁释放[40]。③ 双孔通道家族(TPCNs):TPCNs是细胞内由TPCN1和TPCN2组成的阳离子通道家族,它们独特地定位于溶酶体,是众所周知的钙离子和钠离子通道[41]。最近的研究发现,TPCNs也参与内吞体铁的释放,该过程受NAADP-AM和Ned-19所调节[42]。
在PD病人和动物模型的大脑中,均发现自噬-溶酶体途径功能障碍[43]。近年来,越来越多研究表明,PD更像是一种溶酶体功能障碍疾病[44-45]。铁沉积在促进α-突触核蛋白聚集的同时,可引起自噬-溶酶体途径功能受损[42],导致α-突触核蛋白聚合物不能被有效地清除,从而引起多巴胺神经元的退化和死亡[46]。PD相关的细胞和动物实验证明,自噬相关基因的过表达或小分子自噬诱导剂可清除α-突触核蛋白,保护神经细胞[47-49]。自噬诱导剂姜黄素可通过螯合铁离子发挥保护作用[50];经典的铁离子螯合剂去铁胺(DFO)可在PD细胞模型通过诱导自噬而发挥保护作用[51]。以上证据揭示了自噬-溶酶体途径在PD中的重要作用。由于溶酶体内有大量强还原性铁,维持其正常功能以及保护其膜的完整性则非常重要。铁结合蛋白,比如金属硫蛋白[52-53]和热休克蛋白70(Hsp70)[54-55]等,具有内源性铁螯合剂特性,它们通过自噬进入溶酶体并暂时螯合溶酶体内的氧化还原性铁,从而保护溶酶体膜的完整性进而保护细胞免受Fenton反应的损伤[54,56-57]。尽管目前有关自噬-溶酶体途径在铁代谢中的研究还非常有限,但是细胞铁超载时往往伴随着溶酶体功能障碍[58],而且溶酶体膜通透性的增加會直接导致细胞内的氧化应激反应[59-60]。因此,自噬-溶酶体途径功能障碍也可能是导致PD铁稳态失衡的一个重要因素[37,61]。
1.4 泛素-蛋白酶体系统
泛素-蛋白酶体系统是真核细胞内另一条重要的蛋白降解通路,在降解细胞内错误折叠的蛋白(如Alpha-突触核蛋白)和铁代谢过程中也起着重要作用。与自噬-溶酶体途径类似,泛素-蛋白酶体系统也可通过降解铁蛋白而释放铁离子。当细胞内的铁因过表达铁转出蛋白FPN1或者膜通透性强的铁螯合剂而耗竭时,铁蛋白主要通过泛素-蛋白酶体系统降解而释放铁离子[62-63]。当细胞内的铁因膜通透性差的铁螯合剂(比如DFO)而耗竭时,铁蛋白降解则发生在溶酶体[63-64]。同时,当自噬抑制剂3-甲基腺嘌呤抑制自噬后,DFO诱导的铁蛋白降解则发生在蛋白酶体内,提示泛素-蛋白酶体系统可作为补偿途径参与铁蛋白降解。研究表明,蛋白酶体抑制剂可明显增加大鼠黑质区的总铁和Fe2+水平,同时DMT1表达增加,提示泛素-蛋白酶体系统可能是通过降解DMT1而参与铁代谢[65]。
在泛素-蛋白酶体系统降解蛋白质的过程中,靶蛋白泛素化是必不可少的步骤,此过程不但需要ATP,还需要E1、E2和E3等3种酶的参与。泛素系统在细胞铁代谢调节过程中起着非常重要的作用。在铁含量充足的情况下,泛素连接酶SCFFBXL5可识别并泛素化具有IRE结合活性的IRP1和IRP2,最终通过蛋白酶体完成IRPs降解[66]。在自噬-溶酶体途径介导的铁蛋白降解过程中,多聚胞嘧啶结合蛋白1(PCBP1)作为分子伴侣将铁离子运送至溶酶体,并与溶酶体上的核受体辅助激活因子4(NCOA4)结合,从而完成铁蛋白降解而释放铁离子。研究显示,在上述过程中,NCOA4活性依赖于E3泛素连接酶——HERC2[67-68]。Nedd4家族相互结合蛋白1(Ndfip1)是泛素连接酶Nedd4家族的衔接蛋白。我们课题组的研究结果显示,Ndfip1可以通过调节DMT1的降解而参与铁代谢[69]。蛋白酶体抑制剂MG132可以明显逆转Ndfip1诱导的多巴胺转运体(DAT)降解,提示Ndfip1可以能通过泛素-蛋白酶体系统调节DAT[70]。综上所述,PD中泛素-蛋白酶体系统功能障碍也可能是导致铁异常沉积的一个重要因素。
2 铁死亡
由于多巴胺能神经元本身的特性,铁在多巴胺能神经元的沉积更易形成细胞内的促氧化环境。铁与多巴胺被认为是一对毒性组合,铁与多巴胺相互作用产生了对易损脑区有害的中间产物或终产物,二者形成的氧化还原组合可能是多巴胺能神经元退行性病变的重要诱因[71]。近年来,铁对细胞毒性作用研究出现了一种崭新形式——铁死亡。
2.1 铁死亡概述
2012年,DIXON等[72]首次报道了一种铁依赖性的、以脂质过氧化物累积为特征的细胞死亡形式——铁死亡。在细胞形态上,铁死亡与以往报道的任何一种细胞死亡形式都不同,它没有像凋亡那样的染色质聚集和边缘化,也没有像坏死那样的细胞肿胀和质膜破裂,更没有像自噬那样的双层膜结构形成。在铁死亡过程中,ATP合成和细胞核不受影响,但是与正常细胞相比,铁死亡的细胞线粒体萎缩变小,且膜密度增加[72]。细胞凋亡、坏死、自噬抑制剂均不能阻断铁死亡,而铁螯合剂、抗氧化剂等却可以阻断铁死亡[73]。在生化特征上,铁死亡主要表现为铁、氨基酸和脂质的代谢紊乱而导致的铁离子聚集、还原型谷胱甘肽(GSH)耗竭和细胞膜脂质过氧化物累积等。在分子机制上,虽然众多化合物诱导铁死亡的信号通路不同,但是它们的上游信号通路最终都是通过直接或者间接影响谷胱甘肽过氧化酶 4(GPX4)的活性,因此GPX4被普遍认为是一种重要的铁死亡调节因子[74]。同时,GPX4是一种内源性的膜脂修复酶,在其催化作用下,GSH可将具有潜在毒性的过氧化脂类还原为无毒的脂醇,从而阻止铁死亡的发生。随着研究的深入,研究者们发现在某些癌细胞上,抑制GPX4后并不能触发铁死亡,提示在这些细胞中可能存在着某些独立于GPX4的保护系统[75]。即使在GPX4缺失时,铁死亡抑制蛋白1(FSP1)仍然可在细胞膜上将辅酶Q10氧化还原为泛醇,从而阻碍铁死亡的发生,而且只有N端被豆蔻酰化修饰后FSP1才能发挥抗铁死亡的功能,这是目前首次发现的能够补偿GPX4缺失而抑制铁死亡的酶催化系统。
2.2 铁死亡与PD
自从发现铁异常聚集在多巴胺能神经元退变中起着重要作用以来,研究者的关注点基本集中在铁诱导的氧化应激和自由基生成,以及由此产生的凋亡、坏死、自噬等细胞死亡形式。以往尸检报告显示,与正常人相比,PD病人黑质区的铁水平增加超过30%[76],GSH水平下降约40%[77],脂质过氧化物明显升高[78],虽然这些特征与铁死亡的生化特征高度吻合,但是铁死亡在PD中的研究还非常少。GPX4对运动神经元的健康和生存非常重要,成年小鼠条件敲除GXP4后很快诱发运动神经元变性,从而导致小鼠瘫痪和死亡,而铁死亡抑制剂可延缓这一过程[79],提示铁死亡在神经退变过程中起着重要作用。2016年,BRUCE等[80]在MPTP制备的PD小鼠模型上发现了铁死亡现象,该过程与PKCα激活相关,而且铁死亡抑制剂Ferrostatin-1可显著抑制MPTP对多巴胺能神经元的毒性。以上的研究提示,铁死亡参与了黑质区多巴胺能神经元的退变过程[81],但是PD相关蛋白和基因是否参与调控死亡,仍有待于进一步的研究。另外,值得注意的是,自噬可以通过促进铁蛋白的降解加剧铁死亡的发生[82]。一方面,自噬可通过促进α-突触核蛋白的清除保护多巴胺能神经元[83];另一方面,自噬促进铁蛋白的降解加剧铁死亡。这充分体现了自噬的双面性。
3 结语
近年来,越来越多的研究证实铁异常沉积参与了多巴胺能神经元的退变,由此研究者们提出铁可成为PD早期临床诊断的指标,是开发防治PD新型药物的一个靶点。作为一种铁依赖性的新型细胞死亡形式,铁死亡在神经退行性疾病、脑外伤、出血性和缺血性中风等疾病中得到广泛关注。虽然铁死亡的主要生化特征(铁离子聚集、GSH耗竭和细胞膜脂质过氧化物累积等)很早就已经在PD病人中被发现,但是铁死亡在PD中的研究仍然非常少。因此,深入探讨铁死亡在PD發生中的作用,将为阐明多巴胺能神经元的退变机制及其防治提供新的作用靶点和前沿性理论基础。
[参考文献]
[1] PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[2] KALIA L V, LANG A E. Parkinsons disease[J]. Lancet, 2015,386(9996):896-912.
[3] ROSSI A, BERGER K, CHEN H, et al. Projection of the prevalence of Parkinsons disease in the coming decades: revisited[J]. Movement Disorders, 2018,33(1):156-159.
[4] DORSEY E R, CONSTANTINESCU R, THOMPSON J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007,68(5):384-386.
[5] MOREAU C, DUCE J A, RASCOL O, et al. Iron as a therapeutic target for Parkinsons disease[J]. Movement Disorders, 2018,33(4):568-574.
[6] GUINEY S J, ADLARD P A, BUSH A I, et al. Ferroptosis and cell death mechanisms in Parkinsons disease[J]. Neurochemistry International, 2017,104:34-48.
[7] THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinsons disease[J]. J Neurol Neurosurg Psychiatry, 2020,91(4):418-425.
[8] JIANG H, WANG J, ROGERS J, et al. Brain Iron metabolism dysfunction in Parkinsons disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[9] BERG D, SEPPI K, BEHNKE S, et al. Enlarged substantia nigra hyperechogenicity and risk for parkinson disease a 37-month 3-center study of 1 847 older persons[J]. Archives of Neurology, 2011,68(7):932-937.
[10] PESCH B, CASJENS S, WOITALLA D, et al. Impairment of motor function correlates with neurometabolite and brain Iron alterations in Parkinsons disease[J]. Cells (Basel, Switzerland), 2019,8(2):96-108.
[11] SUN J, LAI Z, MA J, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders, 2019,35(3):478-485.
[12] DEVOS D, CABANTCHIK Z I, MOREAU C, et al. Conservative iron chelation for neurodegenerative diseases such as Parkinsons disease and amyotrophic lateral sclerosis[J]. J Neural Transm (Vienna), 2020,127(2):189-203.
[13] WANG Zhuo, ZENG Yuanning, YANG Peng, et al. Axonal Iron transport in the brain modulates anxiety-related behaviors[J]. Nature Chemical Biology, 2019,15(12):1214-1222.
[14] YU Xiaojun, DU Tingting, SONG Ning, et al. Decreased Iron levels in the temporal cortex in postmortem human brains with Parkinson disease[J]. Neurology, 2013,80(5):492-495.
[15] DEXTER D T, CARAYON A, VIDAILHET M, et al. Decreased ferritin levels in brain in Parkinsons disease[J]. Journal of Neurochemistry, 1990,55(1):16-20.
[16] XU Huamin, LIU Xiaodong, XIA Jianjian, et al. Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinsons disease[J]. FASEB Journal, 2018,32(11):6100-6111.
[17] SALAZAR J, MENA N, HUNOT S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinsons disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(47):18578-18583.
[18] LIU C, ZHANG C W, LO S Q, et al. S-nitrosylation of divalent metal transporter 1 enhances Iron uptake to mediate loss of dopaminergic neurons and motoric deficit[J]. Journal of Neuroscience, 2018,38(39):8364-8377.
[19] DU X, XU H, SHI L, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro[J]. Sci Rep, 2016,6:33674-33683.
[20] SONG N, WANG J, JIANG H, et al. Ferroportin 1 but not hephaestin contributes to Iron accumulation in a cell model of Parkinsons disease[J]. Free Radical Biology & Medicine, 2010,48(2):332-341.
[21] WANG Jun, JIANG Hong, XIE Junxia. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats[J]. European Journal of Neuroscience, 2007,25(9):2766-2772.
[22] ZHENG J, JIANG R, CHEN M, et al. Multi-Copper Ferroxidase-Deficient mice have increased brain iron concentrations and learning and memory deficits[J]. Journal of Nutrition, 2018,148(4):643-649.
[23] DUCE J A, TSATSANIS A, CATER M A, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by Zinc in Alzheimers disease[J]. Cell, 2010,142(6):857-867.
[24] LEI P, AYTON S, FINKELSTEIN D I, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export[J]. Nature Medicine, 2012,18(2):291-295.
[25] WANG W, SONG N, ZHANG H, et al. 6-Hydroxydopamine upregulates iron regulatory protein 1 by activating certain protein kinase C isoforms in the dopaminergic MES23.5 cell line[J]. The International Journal of Biochemistry & Cell Biology, 2012,44(11):1987-1992.
[26] WANG Jia, SONG Ning, JIANG Hong, et al. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive Oxygen/Nitrogenspecies production in ventral mesencephalic neurons[J]. Bio-chimica et Biophysica Acta, 2013,1832(5):618-625.
[27] CI Y Z, LI H, YOU L H, et al. Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinsons di-sease[J]. Neurochem Int, 2020,134:104657.
[28] NEMETH E, TUTTLE M S, POWELSON J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science (New York, N.Y.), 2004,306(574):2090-2093.
[29] SCHMIDT P J. Regulation of iron metabolism by hepcidin under conditions of inflammation[J]. Journal of Biological Che-mistry, 2015,290(31):18975-18983.
[30] DU F, QIAN C, QIAN Z M, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway[J]. Glia, 2011,59(6):936-945.
[31] DU Fang, QIAN Zhongming, LUO Qianqian, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-Overloaded rats[J]. Molecular Neuro-biology, 2015,52(1):101-114.
[32] CUI Juntao, LI Qijun, SONG Ning, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J]. Frontiers in Cellular Neuroscience, 2020,14:47-60.
[33] KWIATEK-MAJKUSIAK J, GEREMEK M, KOZIOROWSKI D, et al. Higher serum levels of pro-hepcidin in patients with Parkinsons disease treated with deep brain stimulation[J]. Neurosci Lett, 2018,684:205-209.
[34] HOU X, WATZLAWIK J O, FIESEL F C, et al. Autophagy in Parkinsons disease[J]. J Mol Biol, 2020,[online ahead of print].
[35] ZHANG Y, MIKHAEL M, XU D, et al. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit[J]. Antioxidants & Redox Signaling, 2010,13(7):999-1009.
[36] HORIE T, KAWAMATA T, MATSUNAMI M, et al. Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth[J]. Journal of Biological Chemistry, 2017,292(20):8533-8543.
[37] CHEN L L, HUANG Y J, CUI J T, et al. Iron dysregulation in Parkinsons disease:focused on the Autophagy-Lysosome pathway[J]. ACS Chemical Neuroscience, 2019,10(2):863-871.
[38] DONG X Q, CHENG X, MILLS E, et al. The type Ⅳ mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel[J]. Nature, 2008,455(7215):992-996.
[39] JABADO N, JANKOWSKI A, DOUGAPARSAD S, et al. Natural resistance to intracellular infections:natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent Manganese transporter at the phagosomal membrane[J]. Journal of Experimental Medicine, 2000,192(9):1237-1248.
[40] HENTZE M W, MUCKENTHALER M U, ANDREWS N C. Balancing acts:molecular control of mammalian iron metabolism[J]. Cell, 2004,117(3):285-297.
[41] LIN-MOSHIER Y, KEEBLER M V, HOOPER R, et al. The two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(36):13087-13092.
[42] FERNANDEZ B, FDEZ E, GOMEZ S P, et al. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A[J]. Autophagy, 2016,12(9):1487-1506.
[43] LYNCH D A, MAO K, WANG K, et al. The role of auto-phagy in Parkinsons disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012,2(4):1-13.
[44] KLEIN A D, MAZZULLI J R. Is Parkinsons disease a lysosomal disorder[J]? Brain, 2018,141(8):2255-2262.
[45] WALLINGS R L, HUMBLE S W, WARD M E, et al. Lysosomal dysfunction at the centre of Parkinsons disease and frontotemporal dementia/amyotrophic lateral sclerosis[J]. Trends in Neurosciences, 2019,42(12):899-912.
[46] GUO F, LIU X, CAI H, et al. Autophagy in neurodegenerative diseases:pathogenesis and therapy[J]. Brain Pathology, 2018,28(1):3-13.
[47] HARRIS H, RUBINSZTEIN D C. Control of autophagy as a therapy for neurodegenerative disease[J]. Nature Reviews Neurology, 2012,8(2):108-117.
[48] CHEN L L, SONG J X, LU J H, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway[J]. Journal of Neuroimmune Pharmacology, 2014,9(3):380-387.
[49] CHEN L L, WANG Y B, SONG J X, et al. Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy[J]. Autophagy, 2017,13(11):1969-1980.
[50] YANG C, MA X, WANG Z, et al. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation[J]. Drug Des Devel Ther, 2017,11:431-439.
[51] WU Y C, LI X Q, XIE W J, et al. Neuroprotection of de-feroxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells[J]. Neurochemistry International, 2010,57(3):198-205.
[52] ULLIO C, BRUNK U T, URANI C, et al. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells[J]. Autophagy, 2015,11(12):2184-2198.
[53] CAVALCA E, CESANI M, GIFFORD J C, et al. Metallothioneins are neuroprotective agents in lysosomal storage di-sorders[J]. Annals of Neurology, 2018,83(2):418-432.
[54] KARLSSON M, KURZ T. Attenuation of iron-binding pro-teins in ARPE-19 cells reduces their resistance to oxidative stress[J]. Acta Ophthalmologica, 2016,94(6):556-564.
[55] KURZ T, BRUNK U T. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form[J]. Autophagy, 2009,5(1):93-95.
[56] LI Y, CHEN M, XU Y, et al. Iron-mediated lysosomal membrane permeabilization in ethanol-induced hepatic oxidative damage and apoptosis: protective effects of quercetin[J]. Oxid Med Cell Longev, 2016, 2016:4147610-4147624.
[57] TERMAN A, KURZ T. Lysosomal iron, iron chelation, and cell death[J]. Antioxidants & Redox Signaling, 2013,18(8):888-898.
[58] SEIBLER P, BURBULLA L F, DULOVIC M, et al. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells[J]. Brain, 2018,141(10):3052-3064.
[59] KURZ T, LEAKE A, VON ZGLINICKI T, et al. Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage[J]. Biochemical Journal, 2004,378(Pt 3):1039-1045.
[60] TENOPOULOU M, DOULIAS P T, BARBOUTI A, et al. Role of compartmentalized redox-active iron in Hydrogen peroxide-induced DNA damage and apoptosis[J]. Biochemical Journal, 2005,387(Pt 3):703-710.
[61] KRISHAN S, JANSSON P J, GUTIERREZ E, et al. Iron metabolism and autophagy:a poorly explored relationship that has important consequences for health and disease[J]. Nagoya Journal of Medical Science, 2015,77(1/2):1-6.
[62] DE DOMENICO I, VAUGHN M B, LI L, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome[J]. EMBO Journal, 2006,25(22):5396-5404.
[63] DE DOMENICO I, WARD D M, AUTOPHAGY K J. Ferritin and iron chelation[J]. Autophagy, 2010,6(1):157-157.
[64] DE DOMENICO I, WARD D M, KAPLAN J. Specific iron chelators determine the route of ferritin degradation[J]. Blood, 2009,114(20):4546-4551.
[65] ZHU Wen, LI Xuping, XIE Wenjie, et al. Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration[J]. Neurobiology of Disease, 2010,37(2):307-313.
[66] IWAI K. Regulation of cellular iron metabolism: Iron-depen-dent degradation of IRP by SCF (FBXL5) ubiquitin ligase[J]. Free Radic Biol Med, 2019,133:64-68.
[67] MANCIAS J D, PONTANO VAITES L, NISSIM S, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis[J]. Elife, 2015,4:10308-10326.
[68] RYU M S, DUCK K A, PHILPOTT C C. Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells[J]. Blood Cells Mol Dis, 2018,69:75-81.
[69] JIA W T, XU H M, DU X X, et al. Ndfip1 attenuated 6-OHDA-induced iron accumulation via regulating the degradation of DMT1[J]. Neurobiol Aging, 2015,36(2):1183-1193.
[70] LIU Kai, XU Huamin, XIANG Hengwei, et al. Protective effects of Ndfip1 on MPP(+)-induced apoptosis in MES23.5 cells and its underlying mechanisms[J]. Experimental Neuro-logy, 2015,273:215-224.
[71] SONG N, IRON X J. Dopamine, and alpha-synuclein interactions in at-risk dopaminergic neurons in Parkinsons disease[J]. Neuroscience Bulletin, 2018,34(2):382-384.
[72] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072.
[73] YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends in Cell Biology, 2016,26(3):165-176.
[74] SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019,133:144-152.
[75] BERSUKER K, HENDRICKS J M, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784):688-692.
[76] DEXTER D T, WELLS F R, LEES A J, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinsons disease[J]. Journal of Neurochemistry, 1989,52(6):1830-1836.
[77] SIAN J, DEXTER D T, LEES A J, et al. Alterations in glutathione levels in Parkinsons disease and other neurodegenerative disorders affecting basal ganglia[J]. Annals of Neurology, 1994,36(3):348-355.
[78] DEXTER D T, CARTER C J, WELLS F R, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinsons di-sease[J]. Journal of Neurochemistry, 1989,52(2):381-389.
[79] CHEN L, HAMBRIGHT W S, NA R, et al. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons Results in rapid motor neuron degeneration and paralysis[J]. Journal of Biological Chemistry, 2015,290(47):28097-28106.
[80] DO VAN B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinsons disease that is regulated by PKC[J]. Neurobiology of Disease, 2016,94:169-178.
[81] CHEN L, XIE J. Ferroptosis-suppressor-protein 1: a potential neuroprotective target for combating ferroptosis[J]. Mov Di-sord, 2020,35(3):400-400.
[82] GAO M H, MONIAN P, PAN Q H, et al. Ferroptosis is an autophagic cell death process[J]. Cell Research, 2016,26(9):1021-1032.
[83] XILOURI M, BREKK O R, STEFANIS L. Autophagy and Alpha-synuclein: relevance to Parkinsons disease and related synucleopathies[J]. Movement Disorders, 2016,31(2):178-192.
(本文編辑 于国艺)