蛋黄卵磷脂的结构、提取、功能与脂质体研究进展

2020-05-22 00:51黄梦玲吴倩倩杨瑞鹏
粮油食品科技 2020年3期
关键词:卵磷脂脂质体磷脂

朱 帅,黄梦玲,吴倩倩,杨瑞鹏,张 敏,刘 云

专题报道(一)

蛋黄卵磷脂的结构、提取、功能与脂质体研究进展

朱 帅1,黄梦玲1,吴倩倩1,杨瑞鹏2,张 敏2,刘 云1

(1. 北京化工大学 生命科学与技术学院,北京 100029;2. 蜜儿乐儿乳业(上海)有限公司,上海 200335)

综述蛋黄卵磷脂的分子结构、提取方法、功能活性,以及在脂质体方面的最新研究现状。蛋黄卵磷脂结构主要是以甘油为骨架,通过酰基键与磷酸和脂肪酸连接而成的一种磷脂类两亲分子,根据碱基基团的不同,蛋黄卵磷脂包括了磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰丝氨酸、磷脂酸和磷脂酰甘油等6种。目前,提取蛋黄卵磷脂的方法主要有溶剂提取法和超临界萃取法;蛋黄卵磷脂具有抗氧化、抗菌、抗炎、神经保护和心脑血管保护等功能的生理活性;此外,还简单介绍了蛋黄卵磷脂脂质体的种类和应用现状。为蛋黄卵磷脂产品的开发提供良好的参考。

蛋黄卵磷脂;分子结构;提取方法;功能活性;脂质体

1 蛋黄卵磷脂的种类与分子结构

蛋黄卵磷脂是从蛋黄中提取并精制得到的天然磷脂混合物,为两亲分子(一端为亲水的含氮或磷的头,另一端为疏水(亲油)的长烃基链)。根据骨架醇种类的不同,蛋黄卵磷脂主要分两类:一类是以甘油醇为骨架,称为甘油磷脂(glycerophospholipids);另一类是以鞘氨醇为骨架,称作鞘磷脂(sphingolipids)。

据报道,每百克蛋黄含有9.442 g磷脂、1 011 mg胆固醇、0.83 mg叶黄素、0.42 mg玉米黄素、0.53 mg角黄素和0.11 mg β-胡萝卜素[1]。蛋黄体积约为全蛋的30%~32%,由脂肪(30%),蛋白质(15%),水分(50%)等化学组成。Gazolu-Rusanova等利用SD-PAGE分离出蛋黄蛋白质的种类和组成(如图1右)[2]。经冷冻离心后,蛋黄分上清(plasma)和沉淀(granules)两部分。上清部分结构主要为聚集体形式,沉淀部分主要为球状(如图1)。上清占蛋黄干物质重77%~81%,沉淀占19%~23%。上清中含85%低密度脂蛋白(LDL)和15%卵黄蛋白(livetins)。沉淀中含70%高密度脂蛋白(HDL)、16%高磷蛋白(phosvitin)和12%低密度脂蛋白(LDL)[3]。

甘油卵磷脂的结构特点是,甘油sn-1和sn-2上的羟基被饱和或者不饱和脂肪酸酯化,sn-3上的羟基被磷酸酯化,磷酸又与碱基连接,依据碱基基团的不同,甘油卵磷脂主要种类包括磷脂酰胆碱(phosphatidylcholine, PC)、磷脂酰乙醇胺(phosphatidylethanolamine, PE)、磷脂酰肌醇(phosphatidylinositol, PI)、磷脂酰丝氨酸(phosphatidylserine, PS)、磷脂酸(phosphatidic acid, PA)和磷脂酰甘油(phosphatidylglycerol, PG)。除以上6种以外,甘油磷脂分子中甘油Sn-1位的脂酰基被长链醇取代形成乙烯醚,则称为缩醛磷脂(plasmalogen glycerophospholipid)。甘油磷脂分子中磷酰基被磷酸酯基取代,称为磷酸脂(phosphonolipid)。利用磷脂酶和特异性脂肪酶水解甘油卵磷脂,将产生溶血磷脂酰胆碱。Gazolu-Rusanova等研究表明,溶血磷脂酰胆碱油/水界面和液体膜特性起着非常重要的作用[2]。甘油磷脂的结构与种类见图2。

鞘磷脂(sphingolipid)由神经鞘氨醇(sphingosine,简称鞘氨醇或神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。在神经鞘磷脂中发现的脂肪酸有软脂酸、硬脂酸、掬焦油酸、神经烯酸等。鞘氨醇和神经鞘磷脂的分子结构如图3所示。

图1 蛋黄结构与组成成分[2-3]

图2 甘油磷脂种类与分子结构[4]

图3 鞘氨醇和神经鞘磷脂的分子结构

Ali等[5]采用超高效液相色谱耦合四极杆飞行时间质谱 (UPLC-Q-TOF-MS)分析了鸭蛋、鸡蛋和鹌鹑蛋中卵磷脂的分子结构,结果表明,上述3种不同来源禽蛋中主要卵磷脂结构为磷脂酰胆碱(16:0/18:1), 磷脂酰胆碱(18:0/20:4Δ5,8,11,14),磷脂酰肌醇(18:0/18:2Δ9,12),磷脂酰丝氨酸(18:0/18:2Δ9,12),鞘磷脂(16:0/18:1Δ9)和溶血磷脂酰胆碱 (16:0) 等6种。研究表明,对卵磷脂结构进行改性,可以提高卵磷脂的理化特性[6-8]。Asomaning and Curtis采用sn-1,3特异性脂肪酶改性鸡蛋卵磷脂,大大提高了卵磷脂的乳化性和营养价值,且脂肪酶重复使用10次,活力仍保持63%[9]。

2 蛋黄卵磷脂的提取方法

2.1 溶剂提取法

有机溶剂提取法是提取蛋黄卵磷脂的常用方法,具有生产周期短、生产能力大、易于实现规模化量产等优点。Kovalcuks & Duma报道了蛋黄卵磷脂在极性溶剂乙醇和非极性溶剂正己烷中的分配系数,结果表明,97.89% PC和99.81% PE溶解在乙醇中,只有2.11% PC和0.19% PE溶解在正己烷中[10]。因此,根据相似相溶原理,一般采用两步法提取蛋黄卵磷脂,首先采用非极性溶剂(如正己烷、乙醚、氯仿、丙酮等)从蛋黄中脱去油脂,然后利用极性溶剂(如乙醇、丁醇等)从脱后的蛋黄残渣中提取卵磷脂。也有文献报道,采用混合溶剂从蛋黄中提取总脂,然后用丙酮沉淀卵磷脂。根据蛋黄原料形态(鲜蛋黄和蛋黄粉)不同,溶剂提取卵磷脂工艺流程稍有不同。2005年,Palacios & Wang开发了一种利用乙醇从新鲜鸡蛋中提取卵磷脂的方法(如图4),文献作者首先采用正己烷提取新鲜蛋黄中的中性脂,然后采用乙醇提取和丙酮沉淀卵磷脂,纯度达95%[11]。同年,Palacios & Wang开发了以蛋黄粉为原料,采用乙醇直接提取和丙酮脱油/乙醇提取卵磷脂两种工艺技术(如图5),结果表明,蛋黄粉不脱油,乙醇直接提取,提取物得率23.9%,卵磷脂纯度为36.7%;采用丙酮先脱除中性脂,然后乙醇提取,提取物得率13.5%,卵磷脂纯度为53.3%。最近,Su等开发了只采用乙醇溶剂提取蛋黄卵磷脂工艺,65 ℃提取1 h后分离,乙醇提取液于4 ℃下低温结晶,除去甘油三酯,然后50 ℃条件下用β-环糊精包埋,除去胆固醇,离心分离,获得纯度为51.47%的卵磷脂[12]。Puertas & Vázquez综述蛋黄卵磷脂提取过程中胆固醇的去除方法[13]。Chen等对乙醇提取蛋黄粉中卵磷脂工艺进行优化,最佳工艺参数为乙醇浓度91.1%,提取温度39.5 ℃,卵磷脂提取物中PC含量为75.59%。采用MALDI TOF-MS方法鉴定出9种PC结构。文献作者指出,PC通过调节乙酰胆碱脂酶和单氨氧化酶活性,以及丙二醛水平,来抑制东莨菪碱诱导的细胞神经毒性和氧化应激损伤[14]。Sun等采用乙醇提取蛋黄粉和正己烷二次提取蛋黄残渣工艺,提取磷脂酰乙醇胺(PE),最佳工艺参数为乙醇浓度为98%,乙醇/正己烷比率4.6∶1,提取温度40.7 ℃,所得PE浓度为58.94 µg/mL。采用MALDI TOF-MS方法鉴定出6种PE结构。另外,作者采用电子自旋光谱仪研究了TLC纯化后PE的抗氧化活性,浓度为6 mg/mL的PE清除自由基DPPH能力为69.15%[15]。Wang等研究不同浓度的乙醇和丁醇提取蛋黄卵磷脂效果,结果表明,在总脂提取过程中丁醇更有效,而75%乙醇提取卵磷脂得率和纯度最高[16]。

图4 以新鲜蛋黄为原料溶剂法提取卵磷脂的工艺流程[2]

图5 以干燥蛋黄粉为原料溶剂法提取卵磷脂的工艺流程[2]

2.2 超(亚)临界萃取法

相比溶剂法,超(亚)临界CO2萃取卵磷脂是一种绿色安全的生产技术,且CO2临界流体的密度很容易通过改变压力和温度来调节。Su等研究亚临界丙酮萃取蛋黄油脂及其残渣蛋白的特性,结果表明,亚临界萃取不仅可以获得高品质油脂,而且对残渣蛋白的乳化性质和溶解度没有影响[17]。Navidghasemizad等报道了在压力48.3 MPa,温度70 ℃,CO2流速1 L/min条件下,萃取蛋黄卵磷脂,探讨水分添加对卵磷脂萃取效果的影响,结果表明,压力48.3 MPa和温度70 ℃条件下,超临界CO2从新鲜蛋黄中萃取得到纯度为87%的卵磷脂[18]。Haq & Chun报道以90%乙醇为夹带剂,超临界CO2萃取卵磷脂,在40 ℃、27.5MPa和10%乙醇夹带剂条件下,卵磷脂得率为6.9%,纯度80.4%[19]。卵磷脂在超临界CO2中的溶解度随压力和温度的升高而增大。Jash等研究压力为12.4~17.2 MPa和温度为313~353 K条件下,卵磷脂在超临界CO2中的溶解度,结果表明,卵磷脂在333 K和12.4 MPa条件下溶解度最高(2= 5.08×10−6),是最低条件下(313 K和17.2 MPa)的2.2倍[20]。Guclu-Ustundag & Temelli综述油脂中游离脂肪酸、甘油一酯、甘油二酯、甘油三酯和脂肪酸酯在超临界CO2中的溶解度[21],文献作者还研究了磷脂和共溶剂在超临界CO2中的溶解行为[22]。Savoire等报道超临界CO2流体二步法萃取卵磷脂工艺,首先采用超临界CO2和7%乙醇共溶剂萃取出中性脂质,然后采用CO2和30%乙醇共溶剂萃取卵磷脂[4]。

3 蛋黄卵磷脂的生理功能活性

研究表明,蛋黄卵磷脂具有很多非常重要的生理功能,如抗氧化活性、抗菌活性、抗炎活性、改善脂肪代谢、保护视网膜、改善心血管理,以及益智健脑等[23-24](如图6)。下面就简单介绍蛋黄卵磷脂抗氧化、抗菌、抗炎、神经保护和心脑血管保护等功能活性。

图6 蛋黄卵磷脂的生理功能活性

3.1 抗氧化活性

早在1992年,King等报道蛋黄卵磷脂具有抗氧化活性,延缓食用鲑鱼油的氧化降解,同时,还证明添加N元素可以增强卵磷脂的抗氧化活性[25]。研究表明,蛋黄卵磷脂结构上脂肪酸的不饱和程度与其抗氧化活性成正相关[26]。磷脂酰胆碱和磷脂酰乙醇胺侧链羟胺基有较强的抑制油脂过氧化能力,表明蛋黄卵磷脂侧链羟胺酸对于卵磷脂抗氧化活性非常重要[27]。蛋黄卵磷脂的抗油脂氧化已应用于油脂生产中,实验表明卵磷脂在油中含量大于0.2%可明显提高菜籽油、葵花籽油、鱼油等的抗氧化作用。

3.2 抗菌活性

蛋黄卵磷脂抗菌活性是指卵磷脂形成纳米级脂质体或者胶束,包埋抗菌活性物质,通过卵磷脂脂质体与微生物细胞结合,释放抗菌活性物质,从而达到杀死微生物或抑制微生物细胞生长的目的[23]。研究表明,天然蛋黄卵磷脂表面zeta电位为–10到+10之间[28],需要对卵磷脂表面阴阳离子功能化,提高zeta电位≥+30或者zeta电位≤–30,才能稳定卵磷脂脂质体,增加与微生物相互作用。

3.3 抗炎活性

蛋黄卵磷脂抗炎活性机理是由于卵磷脂摄取,改变炎症因子NF-κB和MAPK的代谢途径,卵磷脂抑制炎症因子的上调[29]。卵磷脂结构脂肪酸链的不饱和程度与抗炎活性呈正相关。值得一提的是,卵磷脂代谢产物胆碱,被肠道微生物氧化成三甲胺,之后在肝脏中代谢后生成三甲胺-N-氧化物(TMAO)。这些代谢产物与心血管疾病相关。因此,蛋黄卵磷脂的缓慢吸收、肠道特定微生物菌群和血清TMAO水平之间的联系,至今仍未十分清楚。

3.4 神经保护功能

阿尔茨海默症是一种神经性退行疾病,使人体丧失记忆和缺乏认知。摄食蛋黄卵磷脂可以提高人体记忆和认识功能,延缓神经退行性疾病的发生,尤其是蛋黄卵磷脂结构中的不饱和脂肪酸链起到间接保护作用。研究者认为,蛋黄卵磷脂可以通过抑制乙酰胆碱酯酶活性和下调氧化产物浓度,起到神经保护功能。Che等报道0.2 mg/mL蛋黄卵磷脂能保护PC12细胞[30],Chung等指出,333 mg/mL蛋黄卵磷脂能提高老鼠体内乙酰胆碱浓度和认知功能[31],Lim等则认为,5 g/100 g膳食能很好地提高老鼠的认知能力和大脑功能[32]。

3.5 心血管保护功能

流行病学研究表明,高血压是造成心血疾病如猝死和冠状动脉心脏病的主要因子。蛋黄卵磷脂通过抑制血管紧张素转换酶(ACE)来降低血压[33]。Skórkowska-Telichowska等指出每天给代谢综合症患者喂食15 mL卵磷脂,一天3次,症状明显好转[34]。此外,每天摄食1.2 mmol/L蛋黄卵磷脂,可以有效抑制胆固醇吸收和转运,预防肥胖症发生[35]。

4 蛋黄卵磷脂脂质体

蛋黄卵磷脂脂质体作为药物载体,具有鲜明的靶向性,是最新的第四代给药系统中的一个重要制剂。蛋黄卵磷脂结构上的脂肪酸组成与种类对于脂质体性质影响较大,比如,卵磷脂结构中的饱和脂肪酸可以增强脂质体膜的坚固性和非渗透性,卵磷脂结构中的不饱和脂肪酸,可以使脂质体具有较低的相转变,有很好的流动性和低的粘滞性。截止目前,蛋黄卵磷脂脂质体种类包括常规脂质体[36-38]、PEG修饰脂质体[39-41]、多功能脂质体[42-44]和配体靶标脂质体[45-47]等4种(图7),每一种脂质体都有自己的优势和应用领域。Kondratowicz等制备5种蛋黄卵磷脂脂质体,比较它们的结构和机械特性,结果表明,不仅脂质体主要组成成分(如卵磷脂、甘油脂、胆固醇)种类及其比例,对脂质体结构特性影响较大,而且微量成分(如生育酚和胡萝卜素)也有较大影响[48]。Trucillo等采用超临界CO2辅助方法成功制备了卵磷脂/胆固醇和卵磷脂/磷脂酰乙醇胺两种脂质体,平均纳米尺寸为200 nm,用于包埋茶叶碱,包埋率为98%。研究表明,脂质体中添加部分胆固醇和磷脂酰乙醇胺,可以减缓茶叶碱的释放效率[49]。

图7 蛋黄卵磷脂脂质体种类结构示意图[34]

[1] KOVALCUKS A, DUMA M. Distribution of phospholipids, cholesterol and carotenoids in two-solvent system during egg yolk oil solvent extraction[J]. International Scholarly and Scientific Research & Innovation, 2016, 10(5): 323-328.

[2] GAZOLU-RUSANOVA D, MUSTAN F, VINAROV Z, et al. Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions[J]. Food Hydrocolloids, 2020, 99: 105319-105332.

[3] ANTON M. Egg yolk: structures, functionalities and processes[J]. Journal of the Science of Food and Agriculture, 2013, 96(12): 2871-2880.

[4] SAVOIRE R, SUBRA-PATERNAULT P, BARDEAU T, et al. Selective extraction of phospholipids from food by-products by supercritical carbon dioxide and ethanol and formulating ability of extracts[J]. Separation and Purification Technology, 2020, 238: 116394.

[5] ALI A H, ZOU X, LU J, et al. Identification of phospholipids classes and molecular species in different types of egg yolk by using UPLC-Q-TOF-MS[J]. Food Chemistry, 2017, 221: 58-66.

[6] VAN NIEUWENHUYZEN W, TOMAS M C. Update on vegetable lecithin and phospholipid technologies[J]. European Journal of Lipid Science and Technology, 2008, 110(5): 472- 486.

[7] CHOJNACKA A, GLADKOWSKI W, KIELBOWICZ G, et al. Lipase-catalyzed interesterifification of egg-yolk phosphatidylcholine and plant oils[J]. Grasas Y Aceites, 2014, 65(4): 10.

[8] DOIG S D, DIKS R M M. Toolbox for modifification of the lecithin head group[J]. European Journal of Lipid Science and Technology, 2003, 105(7): 368-376.

[9] ASOMANING J, CURTIS J M. Enzymatic modifification of egg lecithin to improve properties[J]. Food Chemistry, 2017, 220: 385-392.

[10] ALEKSANDRS K, MARA D. Distribution of phospholipids, cholesterol and carotenoids in two-solvent system during egg yolk oil solvent extraction[J]. International Scholarly and Scientific Research & Innovation, 2016, 10(5): 323-328.

[11] LUZ E, PALACIOS, TONG W. Egg-yolk lipid fractionation and lecithin characterization[J]. Journal of the American Oil Chemists’ Society, 2005, 82(8): 571-578.

[12] SU Y, TIAN Y, YAN R, et al. Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk[J]. Journal of Food Science and Technology, 2015, 52: 4586-4592.

[13] PUERTAS G, VÁZQUEZ M. Advances in techniques for reducing cholesterol in egg yolk: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 59: 2276-2286.

[14] CHEN J, LIN S, SUN N, et al. Egg yolk phosphatidylcholine: extraction, purifification and its potential neuroprotective effffect on PC12 cells[J]. Journal of Functional Foods, 2019, 56: 372-383.

[15] SUN N, CHEN J, BAO Z, et al. Egg yolk phosphatidylethanolamine: extraction optimization, antioxidative activity, and molecular structure profifiling[J]. Journal of Food Science, 2019, 84(5): 1002-1011.

[16] WANG H, YAO L, LEE S L, et al. Extraction of phospholipids from egg yolk flakes using aqueous alcohols[J]. Journal of the American Oil Chemists' Society, 2017, 94: 309-314.

[17] SU Y, JI M, LI J, et al. Subcritical fluid extraction treatment on egg yolk: Product characterization[J]. Journal of Food Engineering, 2020, 274: 109805-109813.

[18] NAVIDGHASEMIZAD S, TEMELLI F, WU J. Moisture impact on extractability of phospholipids from leftover egg yolk after enzymatic treatment using supercritical carbon dioxide[J]. Food Bioprod Process, 2015, 94: 473-481.

[19] HAQ M, CHUN B S. Characterization of phospholipids extracted from Atlantic salmon byproduct using supercritical CO2with ethanol as co-solvent[J]. Journal of Cleaner Production, 2018, 178: 186-195.

[20] JASH A, HATAMI T, RIZVI S S H. Phosphatidylcholine solubility in supercritical carbon dioxide: Experimental data, thermodynamic modeling, and application in bioactive- encapsulated liposome synthesis[J]. The Journal of Supercritical Fluids, 2020, 158: 104720-104729.

[21] GUCLU-USTUNDAG O, TEMELLI F. Correlating the solubility behavior of fatty acids, mono-, di-, and triglycerides and fatty acid esters in supercritical carbon dioxide[J]. Industrial and Engineering Chemistry Research, 2000, 39: 4756-4766.

[22] GUCLU-USTUNDAG O, TEMELLI F. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2005, 36: 1-15.

[23] WANG D Y, VAN DER MEI H C, REN Y, et al. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections[J]. Frontiers in Chemistry, 2020, 7: 872.

[24] XIAO N, ZHAO Y, YAO Y, et al. Biological activities of egg yolk lipids: A review[J]. Journal of Agricultural and Food Chemistry. 2020, doi: 10. 1021/acs. jafc. 9b06616.

[25] KING M F, BOYDLC, SHELDONBW. Antioxidant properties of individual phospholipids in a salmon oil model system[J]. Journal of the American Oil Chemists' Society, 1992, 69: 545- 551.

[26] YOUNG D, NAUF, PASCOM, et al. Identification of hen egg yolk-derived phosvitinphosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells[J]. Journal of agricultural and food chemistry. 2011, 59: 9207-9218.

[27] SAITO H, ISHIHARA K. Antioxidant activity and active sites of phospholipids as antioxidants[J]. Journal of the American Oil Chemists’ Society, 1997, 74: 1531-1536.

[28] SMITH M C, CRIST R M, CLOGSTON J D, et al. Zeta potential: a case study of cationic, anionic, and neutral liposomes[J]. Analytical and Bioanalytical Chemistry, 2017, 409: 5779-5787.

[29] TREEDE I, BRAUN A, SPARLA R, et al. Anti-inflammatory effects of phosphatidylcholine[J]. The Journal of biological chemistry, 2007, 282: 27155-27164.

[30] CHE H, FU X, ZHANG L, et al. Neuroprotective effects of n-3 polyunsaturated fatty acid-enriched phosphatidylserine against oxidative damage in PC12 cells[J]. Cellular and Molecular Neurobiology, 2018, 741(38): 657-668.

[31] CHUNG S Y, MORIYAMA T, UEZU E, et al. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia[J]. The Journal of Nutrition, 1995, 125: 1484-1489.

[32] LIM S Y, SUZUKI H. Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice[J]. The Journal of Nutrition, 2000, 130(6): 1629-1632.

[33] NOWACKI D, MARTYNOWICZ H, SKOCZYŃSKA A, et al. Lecithin derived from ω-3 PUFA fortifed eggs decreases blood pressure in spontaneously hypertensive rats[J]. Scientific Reports, 2019, 7: 12373.

[34] SKÓRKOWSKA-TELICHOWSKA K, KOSIŃSKA J, CHWOJNICKA M, et al. Positive effects of egg-derived phospholipids in patients with metabolic syndrome[J]. Advances in Medical Sciences, 2016, 61(1): 169-174.

[35] YANG F, CHEN G, MA M, et al. Egg-yolk sphingomyelin and phosphatidylcholine attenuate cholesterol absorption in caco-2 cells[J]. Lipids, 2018, 764(53): 217-233.

[36] ROY A S, DAS S, SAMANTAA. Design, formulation and evaluation of liposome containing isoniazid[J]. International Journal of Pharmaceutics, 2018, 10: 52-56.

[37] DENG W, CHEN W, CLEMENT S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation[J]. Nature Communications, 2018, 9(1): 2713.

[38] GUPTA A S, KSHIRSAGAR S J, BHALEKAR M R, et al. Design and development of liposomes for colon targeted drug delivery[J]. Journal of Drug Targeting, 2013, 12(1): 146-160.

[39] WANG X, SONG Y, SU Y, et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine[J]. Drug Delivery, 2016, 23(4): 1092-1100.

[40] OSMAN G, RODRIGUEZ J, CHAN S Y, et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy[J]. Journal of Controlled Release, 2018, 285: 35-45.

[41] BISWAS S, DODWADKAR N S, DESHPANDE P P, et al. Liposomes loaded with paclitaxel and modifified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effffects in vitro and in vivo[J]. Journal of Controlled Release, 2012, 159: 393-402.

[42] GUAN J, SHEN Q, ZHANG Z, et al. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption[J]. Nature Communications, 2018, 9(1): 2982.

[43] FATHI S, OYELERE A K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice?[J]. Future medicinal chemistry, 2016, 8(17): 2091-2112.

[44] ELOY J O, PETRILLI R, TREVIZAN L N F, et al. Immunoliposomes: A review on functionalization strategies and targets for drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2017, 159: 454-467.

[45] WEI X, ZHAN C, SHEN Q, et al. AD-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery[J]. Angewandte Chemie International Edition, 2015, 54: 3023- 3027.

[46] BOBO D, ROBINSON K J, ISLAM J, et al. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date[J]. Pharmaceutical research, 2016, 33(10): 2373- 2387.

[47] LENT T, CAO V D, NGUYEN T N Q. Soy lecithin-derived liposomal delivery systems: surface modifification and current applications[J]. International journal of molecular sciences, 2019, 20: 4706-4733.

[48] KONDRATOWICZ A, WEISS M, JUZWA W, et al. Characteristics of liposomes derived from egg yolk[J]. Open Chemistry, 2019, 17(1): 763-778.

State-of-the-art of egg yolk lecithin: molecular structure, extraction strategies, bio-activities and liposome application

ZHU Shuai1, HUANG Meng-ling1, WU Qian-qian1, YANG Rui-peng2, ZHANG Min2, LIU Yun1

(1. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; 2. Mille Dairy (Shanghai) Co. Ltd, Shanghai 200335, China)

This review article addresses the state-of-the-art of egg yolk lecithin based on several aspects of molecular structures, extraction methods, functional activities and liposomes applications. Egg yolk lecithin are amphiphilic molecules, which structure is mainly composed of glycerol, phosphate acid and fatty acids through acyl group bond. According to lecithin base group, there are six kinds of lecithin, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), and phosphatidylglycerol (PG). Organosolvent extraction and supercritical CO2extraction are the common approaches for egg yolk extraction. It has been investigated that egg yolk lecithin has many physiological biological activities, such as anti-oxidation, anti-microbial, anti-inflammatory, nueroprotection, and cardiocerebral vascular protection. Finally, the clasification of lecithin liposomes and its application are briefly presented in this review article. We are undoubtedly sure that this review will pave the way towards R&D of egg yolk lecithin in future.

egg yolk lecithin; molecular structure; extraction methods; biological activity; liposomes

TS201.1

A

1007-7561(2020)03-0018-08

10.16210/j.cnki.1007-7561.2020.03.003

2020-03-02

企业委托项目(H2019167)

朱帅,1997年出生,男,硕士生,研究方向为卵磷脂产品的开发与应用研究.

刘云(ORCID: 0000-0002-7521-3831),男,教授,博导,研究方向为功能食品和生物资源利用,E-mail: liuyun@mail.buct.edu.cn.

2020-04-17 11:06:53

http://kns.cnki.net/kcms/detail/11.3863.TS.20200417.1017.002.html

猜你喜欢
卵磷脂脂质体磷脂
PEG6000修饰的流感疫苗脂质体的制备和稳定性
大黄酸磷脂复合物及其固体分散体的制备和体内药动学研究
卵磷脂的概述及在食品药品中的应用
柚皮素磷脂复合物的制备和表征
卵磷脂/果胶锌凝胶球在3种缓冲液中的释放行为
超滤法测定甘草次酸脂质体包封率
黄芩总黄酮脂质体的制备及其体外抗肿瘤活性
辣椒碱磷脂复合凝胶的制备及其药动学行为
白杨素磷脂复合物的制备及其药动学行为
TPGS修饰青蒿琥酯脂质体的制备及其体外抗肿瘤活性