罗若营,林 迪,郭惠杰,廖志锦
(1.福建师范大学 体育科学学院,福州 350001;2.福建工程学院,福州 350001)
肌肉力量是维系个体运动能力及降低运动风险的基础保障。传统上,往往通过大强度训练提升肌肉力量。但是,对于缺乏力量训练经验的非专业人士、康复人群和老年人群体而言,大强度力量训练极易引发不同程度的运动损伤。实际上,小强度结合加压形式的训练方式,同样能够促进肌肉肥大和力量提高。这种安全有效的训练方法可为传统力量训练提供替代方案。
加压训练(BFRT)又称血流限制训练,通过专业绑带对上肢或者下肢近心端施加压力,造成肢体肌肉远端缺血,并在此种状态下进行运动训练。由于肌肉训练效果好、操作方便且安全性高,加压训练近年来逐渐在大众健身、专业训练及运动康复等多个领域得以广泛应用。尽管加压训练对促进肌肉肥大及力量提高已得到大量实验验证,但其生理机制仍然不甚明确。
在诸多解释机制中,类胰岛素生长因子IGF-1(Insulin-like Growth Factor-1)增加被认为是肌肉力量提高和肌肉肥大的可能生理机制之一。IGF-1是一种多肽类激素,主要作用于调节代谢,通过刺激脂质分解和氧化[1],促进肌肉腱组织内胶原合成[2]。Madarame等研究发现,加压训练后IGF-1浓度显著提高[3]。Abe等对固定20%1RM运动强度的加压训练的研究结果同样表明,IGF-1显著升高[4]。可见,训练引起的肌肉大小和力量的变化可能与IGF-1的变化有关。不过,亦有学者持不同看法。Borst和Mitchell等学者研究发现,加压训练后静息血清IGF-1并没有显著变化[5-6],赵之光等学者的研究同样指出,在急性训练和长期训练之后,加压训练与传统增肌训练都没有使IGF-1浓度表现出显著的变化[7]。可见,关于加压训练能否通过提升IGF-1浓度影响肌肉力量的作用机制尚存在一定分歧,还没有形成明确结论。主要原因在于目前该领域相关研究的受试人群类型不同、样本数量相对局限,导致单个研究可信度降低,最终的判断效果不甚理想。Meta分析根据文献资料性质与特征,应用统计方法对多个同类的研究效应进行定量综合,并进行总体效应评价。在系统评价中,Meta分析在回答原单个研究未提出的问题、增加效能检验、解决单个研究结果的争议等方面具有优势。基于此,本文选择国内外期刊关于加压训练对IGF-1影响的实验性研究进行Meta分析,以期为完善丰富训练学相关理论提供参照,为该领域后续深入研究提供循证依据,为科学锻炼、合理训练提供指导。
本研究结果根据系统分析和Meta分析有限报告条目的规定流程进行分析[8]。
本文以PubMed、Web of Science、CNKI和Google Scholar数据库为中心,以KAATSU training、blood flowrestriction training、加压训练、BFRT和Blood flow-restricted等为干预手段的相关主题词,以IGF-1为结局指标,对随机对照试验类型的研究文献进行检索,检索时间从建库到2019年6月。检索流程结果如下(图1)。
图1 文献流程图及筛选结果
由两名研究者独立对检索到的文献进行标题、摘要和全文的文献筛选与交叉核对,如产生分歧则与第三名研究者通过讨论的方式进行重新审查。
纳入标准:①干预手段为加压训练或者低阻力结合加压训练;干预力量均为小强度的力量训练;②包含IGF-1结局指标;③研究类型为随机实验或对照实验;④研究人群为普通人群,无论是否有运动训练经历;⑤研究包含详细的实验设计、限制血流的程度。
排除标准:①不符合前文纳入标准要求的文献,如综述类文献、会议文献、动物实验类文献等;②结局指标不包含IGF-1的文献;③实验结果未用平均数±标准差(M±SD)表示的文献。
两名检索人员在检索过程中采用独立双盲的方式对纳入的文献进行相关指标的提取,具体内容包括:文献作者、实验对象人群、样本量、性别、年龄、干预周期、实验设计方案、结局指标等。对于缺乏数据信息或信息不明确的资料,采用电子邮件的形式与作者联系获取。
利用Buchheit等[9]采用的质量评估方法对纳入的文献进行评估。用“√”表示有明确描述,“×”表示无明确描述,“?”表示未知或未充分描述。对所有纳入的文献进行偏倚性风险的评估。根据PRISMA[10]声明修改的8个评价项目对文献进行评分,通过累计得分将文献分为低风险(7—8分)、中度风险(4—6分)和高风险(0—3分)3个等级。纳入的8篇文章中1篇为低风险,6篇为中度风险,1篇为高风险,平均得分为5分。其中具体评价指标含义为,1:是否明确纳入标准;2:是否进行随机分组;3:组间基础值有无显著差异;4:是否对主要指标的评定者实施盲法;5:所有受试者是否按方案接受干预,或对主要结果进行“意向性分析”;6:是否描述退出或缺失情况,退出比例<20%;7:受试者人数是否满足计算的样本量;8:是否报告每组结果、效应量及精确度。
表1 纳入文献的风险偏倚评价
本文主要运用Revman5.3软件,对纳入文献结局指标进行分析。数据处理的基本思路为:纳入结局指标变量为连续型变量,采用SMD或者MD为效应尺度指标,数据单位相同则采用加权平均数(MD),单位不一致或者数据提取结果相差较大时则采用标准化均数差(SMD)进行处理[11]。用I2统计量来衡量研究间存在的异质性大小,I2=0.0%,认为纳入研究的文献完全没有异质性;I2<50.0%,认为纳入研究的文献异质性比较低;I2≥50.0%,则认为纳入研究的文献有明显的异质性。当各文献间无明显异质性时(P≥0.10且I2<50.0%),采用固定效应模型;当各文献间有明显异质性时(P<0.10或I2≥50.0%),采用随机效应模型[12];当异质性存在时,进行逐篇排除法来进一步寻找异质性来源。采用森林图确定均数差、漏斗图和Egger’s法检验发表偏倚、敏感性分析验证研究结果的可靠性。
8篇文献中受试者为普通人群,其中有部分受试者接受过一定的运动训练,部分受试者耐糖性低。样本量共计271人(加压,普通训练,其他锻炼方式),年龄范围为21—75岁(表2)。8篇文献研究训练的强度均小于30%1RM。加压压力:30—200 mmHg不等(表3)。
表2 纳入文献的基本特征
表3 纳入文献实验设计方案及结局指标
虽然纳入研究测量激素IGF-1的单位相同,但有些研究的数据结果差异较大,因此采用标准化均数差(SMD)作为Meta分析的合并效应量尺度。纳入的8篇文献中,报告了加压训练对激素IGF-1分泌影响的被试对象共计198人(采用加压训练的实验组与对照组)。各研究结果合并后,I2=33%,P=0.17,一般而言,0≤I2≤75%,适宜采用固定效应模型,以防止异质性问题影响研究结果,故为保证分析的科学性,本文采用了固定效应模型分析[19]。Meta分析的森林图(图2)显示加压训练对于增加激素IGF-1分泌达到显著性水平(SMD=0.75,95%CI:0.45—1.04,P<0.000 01)。参照科恩效应量标准,即小效应(≥0.2且<0.5),中等效应(≥0.5且<0.8),大效应(≥0.8)[20],本研究SMD=0.75表明加压训练能够在中等偏上程度增加激素IGF-1分泌。
图2 加压训练对IGF-1分泌影响的Meta分析森林图
8篇文献研究的实验设计、受试人群年龄和干预周期等存在一定的差异,因此,进一步对干预周期、受试人群年龄等进行亚组分析(表4)。
表4 亚组分析结果
漏斗图是一种常见的检验研究分析是否存在发表偏倚的方法,漏斗图是以各个研究数据的标准差为纵轴,以研究效应量为横轴的散点图,根据图形的对称程度来大致判断研究的发表偏倚情况。通过Reman5.3软件对加压训练对激素IGF-1分泌影响的干预效果制作漏斗图。研究发现,8篇文献的研究基本能够形成左右对称,初步判断各研究之间不存在发表偏倚或其他偏倚(图3)。
为了进一步确定发表偏倚情况,通过Stata软件进行Egger’s检验分析,最终得出(表5):t=2.25,P=0.065,95%CI为:[-1.766 694,42.239 67],置信区间包含0,说明研究不存在发表偏倚,Meta分析结果比较稳定。
图3 发表偏倚漏斗图
表5 Egger’s法检验的发表偏倚
通过stata软件下的Meta模块对8篇文献进行敏感性分析显示,8篇文献都落在可信区间内,基本集中在中线附近(图4),表明各研究对结果的差异性影响不大,说明本研究Meta分析结果较为可信。
图4 敏感性分析图
本研究Meta分析初步结果显示,加压训练能够促进激素IGF-1的显著增加,依据先前研究发现,激素IGF-1等合成代谢激素的浓度增加有利于肌肉的生长[21],从而增加肌肉力量和促进肌肉肥大。下文根据Meta分析结果进一步讨论加压训练促进激素IGF-1分泌的具体效应及生理机制。
多数研究发现,激素IGF-1的增加与代谢类激素GH分泌存在着紧密联系。有研究证明,加压训练能够使激素GH显著增加,甚至加压训练方式下GH的增加效果优于传统训练方式[7,13]。有研究发现,加压训练使得生长激素通过受体刺激全身和组织细胞的特异性来促进IGF-1的表达,进而促进肌肉腱组织中胶原蛋白合成[2,22-23]。Florini等学者的研究也发现加压训练下GH显著增加,刺激内源性肌肉产生IGF-1,从而促进肌肉蛋白合成[24-25]。还有研究发现,加压训练方式下能够增加GH的浓度,进而增加IGF-1的表达,使得激素IGF-1在加压训练下实现显著增加效果[16,26]。然而,并非所有的研究都支持前述结论,有一些加压训练实验研究并没有发现激素GH和IGF-1的显著增加。例如,Abe等人的研究发现,采用加压步行训练和增大加压训练阻力两种不同的训练形式,对于GH和IGF-1增加并不明显,训练强度升高后激素GH和IGF-1的水平才显著升高[15,27]。对不同特征人群的研究也发现,健康的年轻人群体中,低负荷耐力训练与BFR结合后,运动后GH浓度的增加幅度与高负荷耐力训练程度相当或更大,进而使得IGF-1浓度增加[3,26]。并且在加压训练中的不同强度、受试人群特征影响下,激素GH的分泌增加或减少,直接或间接影响激素IGF-1的分泌。可见,此类结果产生的原因可能是受到不同训练强度、方式和不同人群特征的影响。
为了探索不同加压训练强度、方式与人群特征差异对研究结果的影响,进一步做亚组分析。对干预时间的亚组分析发现,干预时间小于4周,加压训练对激素IGF-1增加不显著(P=0.07)。干预时间4周以上,激素IGF-1增加具有显著性(P=0.000 1)。在短时间的加压训练或者急性训练后,激素IGF-1急剧增加,但随着运动的恢复,激素IGF-1的浓度逐渐恢复至先前水平。干预时间越长,越可能刺激IGF-1分泌和适应,最终实现显著增加。按年龄特征将受试人群分为青年组和中老年组并进行亚组分析发现,无论是中老年人群还是青年人群,进行加压训练后激素IGF-1都能够显著增加(P=0.004,P=0.000 1)。不过,青年组不存在异质性(I2=0),老年组则存在异质性(I2=61%),这可能与加压训练干预时间有关。中老年群体中,干预时间较短的IGF-1分泌不显著,干预时间不少于4周的加压训练则能够显著提高激素IGF-1水平。当然,具体的机制需要进一步探索验证。
加压训练作为一种以较小的运动强度促进蛋白合成、刺激肌肉生长的训练新方法,已被证实可有效提高肌肉力量和肌肉肥大,不过其作用机制尚不完全明确。传统抗阻力训练可以引起GH和IGF-1急剧增加,进而可能促进肌肉肥大和力量提高[5]。加压训练下的肌肉适应和传统训练相似,同样发现合成代谢激素GH和IGF-1大量增加,Borst和Marx等研究提出,加压训练下IGF-1、GH显著增加,并进一步刺激肌肉蛋白合成[5,28],促进肌肉肥大和力量提高。比如,Abe等人发现,在进行小强度的加压力量训练后,IGF-1的浓度出现显著性增加,表明IGF-1的表达上调可能是有效促进肌肉力量和肌肉肥大的因素[4]。Madarame 等人的研究同样也发现了加压运动后IGF-1 浓度显著提高[29-30],GH和IGF-1等合成代谢激素的浓度增加则有利于肌肉的生长[29]。还有研究发现,在加压训练期间和训练之后都能够引起GH增加从而刺激肝脏产生IGF-1,导致循环血液中IGF-1的浓度升高,进而刺激肌肉蛋白合成[5]。另外,也有研究发现由于加压训练引起血液中GH和IGF-1浓度的增加,可能促进肌肉卫星细胞的增殖和分化,最终导致肌肉肥大[16]。可见,IGF-1激素的增加与肌肉肥大和力量提高之间存在紧密的联系,虽然尚未完全明确加压训练下的肌肉肥大和力量增长的机制,但有些研究发现了IGF-1在肌肉肥大和增长中起到的正向、积极作用。
本研究还存在一定局限,如符合标准被纳入Meta分析的文献数量可能不够充足,部分研究中尚存在受试人群的数量较少的问题。这些因素可能会对研究结果的信度产生影响。随着后续研究文献的增加,可以进一步扩大样本量以提高研究信度。
加压训练作为一种肌肉训练的新形式受到广泛的关注和应用。目前,加压训练更多应用在大众锻炼及运动康复领域,对于竞技体育专业训练群体是否具有良好的效果,则需要研究者进一步探索和验证。