陈 博,王明军,高永胜
一种超宽带零中频的微波光子信道化接收机
陈 博1,3,王明军2,高永胜3*
1咸阳师范学院物理与电子工程学院,陕西 咸阳 712000;2西安理工大学自动化与信息工程学院,陕西 西安 710048;3西北工业大学电子信息学院,陕西 西安 710129
信道化接收技术是现代电子战和雷达系统的重要组成部分,是满足其高频段、大带宽、多通道同时接收等需求的核心使能技术。本文提出了一种基于微波光子的零中频接收机,可通过调整光频梳中心频率的方法使之与宽带RF信号组的中心频率相对应,从而实现3 GHz的宽带射频信号的信道化接收,每个子信道带宽为600 MHz且直接解调为I/Q基带信号。
微波光子;信道化;零中频接收机;光频率梳
通信技术的飞速发展促成了信息大爆炸时代的提前到来,无论是在民用宽带多功能业务接入、通信导航识别亦或是现代电子战等领域的应用,窄带信号的近距离传输及处理都已经无法满足现代通信对宽带信号的应用需求[1]。特别是在现代电子战和雷达系统中,由于接收机接收到的微波信号具有瞬时带宽大、信号种类多、频率覆盖广以及形式多样化等特点[2],要求接收机也必须具备大的瞬时接收带宽,能实时处理同时到达的多频点、多形式信号,且接收机还需要有高灵敏度、高分辨率等特点[3]。传统的接收机受模数转换器(ADC)的采样率和带宽限制,无法对超大带宽的RF信号同时处理。信道化接收机可将接收到的宽带信号分割为多个不同频率的子频带,将所有的子频带利用下变频转化为同中频信号或基带信号,不仅大大降低了系统对ADC的要求,还实现了多频点信号的同时接收功能[4]。因此,信道化接收机已经成为了现代电子战及雷达系统的重要组成部分。
传统的模拟信道化接收机功耗及差损较大,而且对电滤波器的要求也较高,系统的体积会随着子信道数量的增加而显著增加,因此逐渐被数字信道化接收机取代[5]。数字信道化接收机具有可灵活调谐、精度高等优势,但受ADC采样率和工作带宽的限制较为严重,无法满足高度密集的超宽带信号的处理需求,因此研发新型的可处理超宽带信号的信道化接收机意义重大。
与同轴电缆相比,光纤具有低损耗、抗电磁干扰能力强、体积小、质量轻等优势,已成为通信领域的重要传输介质。微波技术和光纤技术的融合产生了一门交叉新型学科——微波光子学。它可以灵活地实现光波与微波信号的相互转换,且具备光子学瞬时带宽大、工作频段宽、隔离度高、抗电磁干扰等一系列优点[6],为研究新型信道化接收机提供了新的解决方案。
1985年,美国TRW公司提出了利用声光波衍射实现了20个信道带宽为5 MHz的射频信道的信道化接收[4];1984年马里兰大学利用FP标准具实现了信道带宽为70 HMz的小范围频谱检测[5];1990年,加州蒙特雷海军研究院提出了一种宽带射频信号的相干声光信道化技术[6];1996年我国北京航空航天大学提出了基于外差接收法的声光信道化接收机[7];2001年,美国NF公司提出了采用相干外差探测信道化技术[8];2006年,澳大利亚Cohlear公司提出了基于FP标准具和混合菲涅尔透镜的信道化接收技术[2];2011年,美国加利福尼亚大学提出了基于四波混频的信道化新方案[9];2011年,浙江大学提出了基于光频梳的可重构信道化接收机[10];2012年,北京邮电大学提出了基于双光梳直接I/Q下变频的信道化接收系统[11];2013年,清华大学提出了单光梳的相干探测接收技术[12];由于微波光子学的出现,利用光子技术实现超宽带信号接收的信道化接收机引起了世界各国的高度关注,也陆续展开了相关研究。大瞬时接收带宽、子信道同时接收信号数量、分辨率以及动态范围等指标也称为衡量信道接收机性能指标的重要参数。
目前已报道的微波光子信道化接收机大多利用载波光频梳加本振光频梳的双光频梳结构配合光滤波器及波分复用器来实现射频信号的多信道同时接收功能,此类方案缺点较为明显,首先多梳线、大间隔、稳定相干且平坦度较高的光频梳较难产生;其次光频梳的梳线数决定了子信道数,光梳间隔需要远大于接收信号的最高频率;而且系统中采用的两套光频梳必须具有精确的频差和稳定的相位关系,这些要求对系统的实施都较为苛刻。
本文提出了一种基于双偏振正交相移键控(DP-QPSK)调制器实现零中频接收的信道化接收机。整个系统仅需要一套光频梳且梳线之间的间隔等于子信道的宽度即可,该套光梳的产生非常容易实现。此外还利用了光子学I/Q解调和平衡探测技术,不仅大大降低了ADC带宽和采样率,还解决了传统零中频接收机存在的本振泄露、二阶交调失真、直流偏差和I/Q不平衡的问题。
超宽带零中频微波光子信道化接收机的系统结构如图1所示,主要由激光二极管(LD)、两个频率不同的本振信号(LO1、LO2)、DP-QPSK调制器、偏振合束器(PBC)、光带通滤波器(OBPF)、单偏振马曾调制器(MZM)、光分路器、窄带OBPF组、偏振控制器(PC)、偏振分束器(PBS)以及平衡探测器(BPD)构成,系统中所涉及的光纤均为保偏光纤。
系统中的DP-QPSK调制器由两个并行的DPMZM调制器与一个PBC集成,LD产生一个频率为193.1 THz,功率为20 dBm的连续光波作为光载波进入DP-QPSK调制器并分为两路分别进入DPMZM1和DPMZM2,光载波可表示为in()=0exp(jc),其中0是光信号的电场幅度,c为角频率。
图1 零中频结构的微波光子信道化接收机示意图
将频率为0.6 GHz的LO1利用DPMZM1调制到光载波上,通过合理设置DPMZM1的调制指数,使DPMZM1输出一个平坦的五线光梳。DPMZM1的输出可表示为
其中:in()为输入光信号电场,0为电信号的幅度,LO1为本振信号LO1的角频率,1a、1b、1c为DPMZM1的三个直流偏压,π为半波电压,利用第一类贝塞尔函数展开后光载波、一阶、二阶光边带可分别表示为
若要生产平坦五线光梳只需满足下列条件:
通过以上公式可得到生成五线平坦光梳时三个直流偏压分别为1a=3.15 V,1b=-6.23 V,1c=0 V。
用频率为10 GHz的LO2调制DPMZM2,同样通过设置DPMZM2里的三个直流偏压V2a、V2b、V2c使其输出一个载波抑制的正负二阶光边带。DPMZM2的输出可表示为
其中LO2为本振信号LO2的角频率,为了生成偶数阶光边带,使MZMa工作在最大传输点,为了抑制载波使MZMb工作在最小传输点,最终DPMZM2输出的载波抑制双边带可表示为
由DPMZM1和DPMZM2生成的两路光信号经PBC偏振复用后输入OBPF,滤出五线光梳和正二阶光边带。滤波后的偏振复用信号可表示为
该信号与一个单偏振MZM相连,五个中心频率分别为18.8 GHz、19.4 GHz、20 GHz、20.6 GHz、21.2 GHz的16QAM信号对MZM进行调制,由于是单偏振MZM,因此只对正二阶光边带调制,不对光频梳调制。
设置单偏振MZM工作在最小传输点,实现载波抑制的双边带调制,因为这组宽带射频信号的中心频率为LO2的两倍,因此调制出的五个信号下边带的中心频率恰好与五线光梳的中心频率完全重合,利用中心频率不同的一组窄带OBPF可将五个带宽均为600 HMz的子信道划分出来,实现了对宽带信号和光频梳的同时分割。经过窄带OBPF的信号由光分路器一分为二后均与PC、PBS和BPD相连,通过合理的设置相位差最终直接得到I路和Q路信息。
本系统通过VPI仿真实现,所有MZM的半波电压均为3.5 V,消光比为30 dB,插损为6 dB,线宽为10 kHz。图2为DPMZM1生成的五线光梳,光梳的频率间隔为0.6 GHz,抑制比为23.3 dB,平坦度较理想。
经单偏振MZM调制后的五个宽带射频信号如图3所示,由于宽带射频信号的中心频率恰好与五线光梳的中心频率一一对应,实现了3 GHz宽带信号的子信道划分,五个子信道的带宽均为600 MHz。
平衡检测技术可以有效抑制共模干扰(主要包括二阶交调IMD2和直流项DC)。为了测试平衡探测抑制干扰的能力,本文选用了功率为0 dBm,频率分别为21 GHz和21.01 GHz的双音信号作为RF输入信号。图4(a)为未加平衡探测的测试结果,虽然三阶无杂散动态范围(SFDR3)达到了106.7 dB·Hz2/3,但二阶交调失真依然是主要失真。并且将SFDR(SFDR2)降低至76.5 dB·Hz1/2,直接影响了整个系统的SFDR。图4(b)为加了平衡探测的测试结果,转换增益为-35.2 dB,比之前增加了6 dB,SFDR为107.5 dB·Hz2/3,由于是在理想的仿真情况下测试,可发现平衡探测技术在理论上可以完全消除IMD2。
信道串扰主要是由于残留的光载波和光边带导致的,为了获得与真实实验相符的数据,将MZM的消光比设置为30 dB,并记录了信道之间的隔离度,通过表1可知,所有信道的隔离度都超过了25 dB。
图5显示了输入的射频信号功率从-20 dBm增加到20 dBm时的误差矢量分析曲线和星座图。从图中可以清楚地发现,随着射频功率的增加,EVM值逐渐减小,然后稳定在1.7%左右。当射频信号输入功率过小时,由于降低了信噪比,星座图和EVM会恶化。
图2 五线光梳示意图
图3 经宽带射频信号调制的频谱
图4 双音信号测试结果。(a) 未加平衡探测;(b) 平衡探测
表1 各信道之间的串扰测量结果
图5 RF功率从-20 dBm增加至20 dBm时的EVM和星座图
本文提出并证明了一种超宽带零中频的微波光子信道化接收机,由于采用全光技术和I/Q平衡探测使其具有超宽的工作频带,低转换损耗以及大动态范围。可将3 GHz的射频信号通过5个带宽为600 MHz的子信道接收。由于采用了平衡探测技术,在抑制直流偏置和二阶交调失真上效果显著,但同时也会为系统带来一定的偏振干扰,在一定程度上增加了系统的复杂程度和成本。相对于采用双光梳的信道化方案,本系统只需要一套光频梳,结构简单易于实现。
[1] HirookaT, NakazawaM. Linear and nonlinear propagation of optical Nyquist pulses in fibers[J]., 2012, 20(18): 19836–19849.
[2] Wang Q, Huo L, Xing Y F,. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator[J].,2014, 39(10): 3050–3053.
[3] WangL X, ZhuN H, LiW,.Polarization division multiplexed photonic radio-frequency channelizer using an optical comb[J].,2013, 286: 282–287.
[4] Gao Y S, Wen A J, Wu X H,.Efficient photonic microwave mixer with compensation of the chromatic dispersion-induced power fading[J].,2016, 34(14): 3440–3448.
[5] WangJ J, ChenM H, LiangY H,. Broadband RF front-end using microwave photonics filter[J].,2015,23(2):839–845.
[6] TangZ Z, PanS L. Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter[J].,2016, 34(20): 4729–4735.
[7] YangX W, XuK, YinJ,. Optical frequency comb based multi-band microwave frequency conversion for satellite applications[J].,2014, 22(1): 869–877.
[8] TangZ Z, ZhuD, PanS L. Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression[J]., 2018, 36(19): 4219–4226.
[9] Gao Y S, WenA J, ZhangW,.Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver[J]., 2017, 65(11): 4513–4525.
[10] GaoY S, WenA J, Jiang, W,.All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters[J].,2018, 26(6): 7336–7350.
[11] TangZ Z, PanS L. A reconfigurable photonic microwave mixer using a 90° optical hybrid[J].,2016, 64(9): 3017–3025.
[12] Jiang W, Zhao SH, Tan QG,.Wideband photonic microwave channelization and image-reject down-conversion[J].,2019, 445: 41–49.
An ultra-wideband microwave photonic channelized receiver with zero-IF architecture
Chen Bo1,3, Wang Mingjun2, Gao Yongsheng3*
1School of Physics and Electronic Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China;2School of Automation and Information Engineering, Xi¢an University of Technology, Xi¢an, Shaanxi 710048, China;3School of Electronics and Information, Northwestern Polytechnical University, Xi¢an, Shaanxi 710129, China
Spectrum modulated by the wideband RF signals
Overview:In modern electronic warfare and radar systems, because the microwave signal received by the receiver has the characteristics of large instantaneous bandwidth, multiple signal types, wide frequency coverage and diversified forms, it is required that the receiver must also have large instantaneous receiving bandwidth, be able to process the multi-frequency and multi-form signals arriving at the same time in real time, and the receiver also needs to have high sensitivity and high resolution. The channelized receiver can divide the received wideband signal into sub-bands of different frequencies, and convert all sub-bands into the same intermediate frequency signal or baseband signal by using down-conversion, which not only greatly reduces the requirements of the system for the ADC but also realizes simultaneous reception of multi-frequency signals. The digital channelized receiver has the advantages of flexible tuning and high precision. However, due to the severe limitation of ADC sampling rate and working bandwidth, it cannot meet the processing requirements of highly intensive ultra wideband signals. Compared with coaxial cable, optical fiber has the advantages of low loss, strong anti electromagnetic interference ability, small volume, light weight and so on. It has become an important transmission medium in the field of communication. The fusion of microwave technology and optical fiber technology has produced a new interdisciplinary subject--microwave photonics. It can flexibly realize the mutual conversion of optical wave and microwave signal, and has a series of advantages such as large instantaneous bandwidth of photonics, wide working frequency band, high isolation, anti electromagnetic interference, etc., which provides a new solution for the research of new channelized receiver.
In this paper, a zero-IF channelized receiver based on microwave photon series is proposed. A scheme for realizing zero-intermediate frequency (IF) channelized receiver using a dual-polarization quadrature phase-shift keying (DP-QPSK) modulator and a narrow-band optical filter is proposed. The channelized system only requires one optical frequency combs to achieve zero-IF multi-channel reception of wideband signals, and the spacing of the optical frequency comb only needs to be equal to the sub-channel width, which is very easy to implement. It is found that using photonic IQ demodulation and balanced detection and reception technology can not only eliminate many disadvantages of the traditional zero-IF receiver, including local oscillator (LO) leakage, DC offset, even-order distortion, and in-phase/quadrature (I/Q) imbalance, but also reduce the bandwidth and sample rate of the analog-to-digital converter (ADC). It is theoretically proved that the RF signal with a bandwidth of 3 GHz can be divided into five sub-channels with a bandwidth of 600 MHz and finally demodulated to I/Q basebands, which is also verified with simulation.
Citation: Chen B, Wang M J, Gao Y SAn ultra-wideband microwave photonic channelized receiver with zero-IF architecture[J]., 2020, 47(3): 190650
An ultra-wideband microwave photonic channelized receiver with zero-IF architecture
Chen Bo1,3, Wang Mingjun2, Gao Yongsheng3*
1School of Physics and Electronic Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China;2School of Automation and Information Engineering, Xi¢an University of Technology, Xi¢an, Shaanxi 710048, China;3School of Electronics and Information, Northwestern Polytechnical University, Xi¢an, Shaanxi 710129, China
Channelized receiving technology is an important part of modern electronic warfare and radar systems. It is a core enabling technology that meets the needs of its high frequency band, large bandwidth, and simultaneous multi-channel reception. In this paper, a zero-IF receiver based on microwave photonic is proposed. The center frequency of the optical frequency comb can be adjusted to correspond to the center frequency of the wideband RF signal group. Therefore, the channelized reception of the 3 GHz wideband RF signal is achieved, and each subchannel has a bandwidth of 600 MHz and is directly demodulated into I/Q baseband signal.
microwave photonic; channelization; zero-intermediate frequency (IF) receiver; optical frequency comb
TN29;TN929.1
A
10.12086/oee.2020.190650
: Chen B, Wang M J, Gao Y S. An ultra-wideband microwave photonic channelized receiver with zero-IF architecture[J]., 2020,47(3): 190650
2019-11-02;
2019-12-02
陕西省重点研发计划项目(2018NY-158);咸阳师范学院“青年骨干教师”培养项目(XSYGG201716)
陈博(1986-),男,硕士,讲师,主要从事微波光子方面的研究。E-mail:chen_bo_16@163.com
高永胜(1989-),男,博士,副教授,主要从事微波光子方面的研究。E-mail:ysgao@nwpu.edu.cn
陈博,王明军,高永胜. 一种超宽带零中频的微波光子信道化接收机[J]. 光电工程,2020,47(3): 190650
Supported by Shaanxi Provincial Key Research and Development Program (2018NY-158) and Xianyang Normal College Youth Key Program (XSYGG201716)
* E-mail: ysgao@nwpu.edu.cn