高岭土族矿物原位晶化合成Y型分子筛催化剂的研究进展

2020-03-09 21:34刘超伟胡清勋王久江刘宏海曹庚振高雄厚
工业催化 2020年11期
关键词:晶化重油高岭土

张 莉,刘超伟,胡清勋,王久江,刘宏海,曹庚振,高雄厚

(中国石油天然气股份有限公司石油化工研究院兰州化工研究中心, 甘肃 兰州 730060)

高岭土族矿物是高岭土、海泡石、膨润土、硅藻土、凹凸棒土、埃洛石等天然矿物的统称,由于具有可塑性、粘性触变性、悬浮性、分散性、吸附交换及耐酸碱性等诸多特性,使得其在造纸、涂料、炼油、耐火材料等多个领域广泛应用,是种重要的非金属矿物[1-3]。

在这些天然矿物中,高岭土由于其特殊硅铝晶体结构及经过热和化学改性具有理想的中孔结构和较好的催化裂化反应活性的特性,成为炼油领域重质油转化很重要的催化材料,由这类材料制得的催化剂在水热稳定性、渣油裂化和抗重金属等方面具有非常突出的优越性能,且具有环保性强、成本低的优势,因而受到石油炼制行业的广泛重视,成为制备重油裂化催化剂的关键性原料[4-8]。

重油催化裂化(RFCC)是石油炼制行业重油轻质化重要手段之一[9-11],相对于国外催化裂化原料,我国很多催化裂化装置的原料油残炭和重金属等含量较高,重质油的高效转化、提高目的产品收率、降低副产物仍然是催化裂化装置追求的主要目标。另外,随着我国燃料油消费结构变化,清洁汽油标准的日益严格和实施,大部分炼油厂采用汽油加氢脱硫、汽油醚化以及MTBE等汽油改质技术来满足日益严格的标准,催化裂化已从生产“最终产品”向“中间产品”过渡,增产丙烯、异丁烯、异戊烯等低碳烯烃和提高催化汽油辛烷值的需求日益强烈。而催化裂化催化剂是催化裂化工艺的核心,改善催化剂的重油转化能力,最大限度提供基础原料,为后续化工产品提供基础保障,对炼油装置可持续性发展、应对油品结构调整、化工产品优化升级具有重大意义。

提高催化裂化催化剂重油裂化能力,关键之一在于提高催化剂的活性中心可接近性,强化分子筛和基质在裂化反应过程中的协同、接力作用,提高重油大分子的转化;之二是要拥有合理的酸性和四通八达的孔道,减少重油分子在催化剂中扩散限制的同时拥有良好的焦炭选择性。

20世纪六七十年代,Haden W L等[12-13]发明了以高岭土为原料采用原位晶化工艺制备NaY沸石的技术,原位晶化催化剂制备技术历经了几十年的发展,目前,国外BASF公司和国内中国石油天然气股份有限公司成为拥有原位晶化催化剂的国内外主要生产商,两家公司在制备催化剂方面申请了大量专利技术[14-22]。与传统采用半合成工艺制备的催化剂相比,该类催化剂具有水热稳定性优异、活性位可接近性理想等特点,显示出优良的重油转化性能和反应优势[23-29]。

本文对“喷雾-合成-改性”和“合成-喷雾-后改性” 两种原位晶化制备分子筛催化剂工艺进行综述,分析技术的优缺点,并对未来发展方向进行展望。

1 喷雾-合成-改性

喷雾-合成-改性工艺是将高岭土族矿物通过喷雾,得到一定筛分分布的微球,被称为喷雾微球,然后将喷雾微球经合成、改性得到催化剂。喷雾微球原料的元素组成、结构会对最终催化剂性能产生主要影响。

1.1 原料拓展与喷雾微球结构改变

目前制备喷雾微球的原料依然以高岭土为主,主要源于高岭土在组成和结构上的优势及理想的分散性和粘结性,使它成为制备原位晶化催化剂不可替代的原料。但高岭土属于不可再生的矿物资源,且优质高岭土的储量有限,随着优质高岭土需求量的急剧增加,势必会造成原料的短缺。喷雾微球的元素组成、结构会对催化剂的孔结构、强度和性能带来重要影响,所以拓宽原料来源,优化喷雾微球结构,成为当前研究的重点。

采用超细高岭土作为原料,能够保证催化剂拥有良好的孔结构和裂化性能[14],是原位晶化催化剂质量稳定的保证。

高岭土族矿物包含很多种,但要作为原位晶化催化剂的原料必须满足粒度、元素含量、结构等诸多要求[30-31]。目前原料拓展研究最多的是硅藻土、煤系高岭土、凹凸棒土和海泡石等。这些矿物与高岭土在形貌、元素含量、胶体性质都有差异,而这些差异会带来喷雾微球和催化剂结构及性质的变化。胡清勋等[32]以硅藻土和高岭土为原料,通过原位晶化工艺制备出重油催化裂化催化剂。研究结果显示加入硅藻土可改变喷雾微球的组成和结构,提高晶化效率和分子筛含量,从而带来催化剂比表面积、孔体积和酸性的显著改变,催化剂重油转化和抗重金属能力显著增强。煤系高岭土由于地质成因与南方高岭土不同,富含碳元素,所以煤系高岭土在原位晶化合成NaY分子筛时具有强度好、孔结构发达的优势,但我国煤系高岭土的品质参差不齐,有些需要预处理后才能使用[33-38]。

虽然拓展的其它高岭土族矿物由于形貌结构、组成与高岭土的差异会改变矿物打浆体系和喷雾微球的一些性质,但都不能完全代替高岭土,且大多处于实验室或中试研究阶段,离工业应用还有距离,寻找品质优异、稳定供应的高岭土资源仍然是原位晶化催化剂制备行业面临的重要课题。

除了原料改变,喷雾微球结构和性能的调变还可通过扩孔剂和结构助剂的添加实现。扩孔剂主要包括软、硬模板剂,结构助剂主要包括各种大孔材料、酸碱改性材料等。软模板剂主要采用带基团的有机大分子,通过后续脱除改变孔道结构。熊晓云[39]等采用淀粉及聚合物PDDA(聚二甲基二烯丙基氯化铵)分别作为有机添加剂,引入到原位晶化体系,改变了胶体性质和喷雾微球的孔道结构,带来结晶度和孔结构的变化。软模板剂需考虑有机物后续过程焙烧带来的环保问题。硬模板剂常采用碳粉或其它无机材料,通过控制合适的加入量调变孔结构。易辉华等[40]采用海南椰壳粉为原料制备扩孔剂EPA-C,并引入到高岭土打浆体系,带来喷雾微球孔结构的增加。在结构助剂方面郑淑琴[41]以硅铝凝胶为模板剂,这种凝胶物质具有大孔结构,会引起喷雾微球结构和强度的变化,结合合成配比条件,可制备出含有NaY分子筛和基质的多孔复合材料。李福荣[42]在高岭土打浆体系中加入一种功能助剂,提高了晶化微球的结晶度及孔体积。此外,还有用酸碱改性材料调变孔结构的研究[43-44]。

1.2 原位晶化合成Y型分子筛

原位晶化催化剂通过水热合成,同时获得分子筛和基质。提高分子筛含量、改善催化剂孔结构是制备优异性能催化剂的基础,在合成条件优化、制备高质量沸石分子筛的晶化规律方面多有研究报道[45-50],适度增加液固比,提高硅、铝源量均可提高产物的结晶度。

在优化晶化合成条件基础上,合成小晶粒或纳米级分子筛成为研究热点[51-53]。与常规尺寸分子筛相比,小晶粒或纳米分子筛具有外比表面大、孔口多,吸附强,孔道规整,反应分子扩散性能好等诸多优势[54-55]。与凝胶法合成的小晶粒NaY分子筛相比,采用原位晶化合成工艺制备,即具备了纳米化带来的分子筛表面性质和孔道的显著变化,又能克服传统纳米晶粒分子筛存在的分离困难和热稳定性相对较差的问题,具有很好的发展前景。刘宏海等[56]采用在高岭土微球上原位晶化Y 型分子筛的方法,在晶化体系中加入聚乙烯基吡咯烷酮或聚乙烯醇,得到含晶粒尺寸为(200~400) nm 的Y型分子筛的原位晶化产物。孙志国[57]采用十二烷基硫酸钠制备小晶粒NaY分子筛,可以将分子筛的平均晶粒由540 nm减少至250 nm,相比于常规的原位晶化型催化剂,在反应原料转化率、裂化产物的选择性以及抗积碳性能等方面均有明显的提高或改善。甄铁丽[58]采用普通原料、原位水热法合成出100 nm的Y型分子筛,这种分子筛在800 ℃以下热稳定优异,超过1 000 ℃,晶体结构坍塌严重,转化为无定型。原位晶化合成纳米Y型分子筛还需解决降低成本、合成条件优化、质量稳定等诸多问题。

1.3 改性工艺提高催化剂性能

重油催化裂化由于原料油重、劣质化程度高,原料油中Ni、V、Fe、Ca、Na等金属含量明显偏高,在催化裂化(FCC)过程中,这些重金属沉积在催化剂上,导致催化剂活性下降,汽油收率降低,产品分布变差,焦炭量增加。钒对催化剂的破坏主要体现在反应过程中转化为V2O5,V2O5在水热条件下形成钒酸破坏Si-O-Al键,或钒酸与沸石分子筛中的稀土元素反应,脱除沸石表面的结构氧,生成低熔点的稀土钒酸盐,引起沸石分子筛晶体结构的破坏[59]。导致FCC装置产品分布变差,轻质油收率下降,氢气产率上升,从而增加气体压缩机负荷,使再生器温度升高,导致操作受到约束[60]。大量镍会导致脱氢反应,促使不饱和烃进行缩聚反应而生焦,使干气中氢气产率增加,严重破坏了FCC催化剂的裂化选择性。并且脱氢后的生成物会堵塞催化剂孔道,降低催化剂比表面积,影响其裂化活性。铁会在催化裂化反应中破坏分子筛晶体、堵塞催化剂孔道,造成催化剂中毒现象。钙主要导致设备腐蚀、催化剂性能变差甚至失活、轻质油收率降低等问题。较高含量的钠会中和催化剂的酸性中心,使催化剂失去活性;能与钒形成低熔点共熔物,降低催化剂的热稳定性[61];还能导致CO助燃剂中毒,使助燃剂用量增加[62]。

因此,开发的原位晶化催化剂必须具备优异水热稳定性和抗重金属能力,才能应对催化裂化装置苛刻的反应条件。而优异性能主要通过后改性得以实现。原位晶化合成出Y型分子筛后,通过后改性过程,活性组分和基质拥有了更为发达的孔道结构、理想的酸性分布和适宜的理化性质及机械强度。大量研究结果和工业应用表明,采用稀土、镁、磷等元素对原位晶化催化剂进行改性,可显著改善催化剂酸性,增加活性组分的稳定性,提高催化剂的抗重金属性能[63-65]。由于原位晶化催化剂制备工艺的特殊性,适度调变骨架结构,如水热脱铝或无机、有机酸脱铝改性[66],可形成更多的二次孔,改善催化剂选择性。国外公司也有通过催化剂结构和酸性的调整,促进重质油的转化,提高催化剂的抗重金属性能[67-71]。

但实际工业装置中,重金属和碱土金属的污染往往复合存在,所以原位晶化催化剂应该发挥自身优势,开发能够抗钒、镍、铁等复合性能的催化剂,以满足炼油厂灵活调变的需求。

2 合成-喷雾-后改性

合成-喷雾-后改性技术路线将高岭土族矿物作为硅源和铝源,在合成条件下原位合成Y型分子筛,然后再通过添加其它组分,喷雾、后改性得到最终催化剂。这种制备工艺路线与第一条技术路线相比,具有灵活调变原料和分子筛含量的优势,诸多研究集中在如何合成高质量的Y型分子筛。程宏飞[72]用淮北煤系高岭土合成NaY分子筛;郑淑琴[73-74]用海泡石或硅藻土为硅源、高岭土为铝源,在水热条件下原位晶化合成NaY分子筛;黄石[75]以焙烧凹凸棒土、高岭土为原料原位合成NaY分子筛。采用上述不同高岭土族矿物依据不同的合成条件均可合成出结晶度稳定的分子筛,也说明原位晶化合成高质量的Y型分子筛是这条工艺路线的核心基础。但这条工艺路线需要关注原位和非原位的占比及分子筛的稳定性,还要注重合成后的Y型分子筛制备成催化剂的后改性工艺流程设计。再有这条工艺路线能耗较高,所以在加氢裂化领域作为活性组分应用较多,且技术以专利形式发表居多[76-80]。

3 结语与展望

重油催化裂化催化剂的研究方向是改善催化剂水热稳定性和孔道贯通性,提高一次裂化能力,减少重油分子在催化剂中的扩散限制。利用天然高岭土族矿物采用原位晶化工艺制备的催化剂具有重油转化能力强,水热稳定性和抗重金属性能突出的优势。随着炼油行业原料油的重劣质化、灵活调变产品分布的需求及对催化剂复合性能的更高要求,原位晶化催化剂除了保持传统水热稳定性优异、重油转化能力突出等优势外,还需要进一步优化制备工艺路线,改善催化剂孔道结构,调变催化剂酸性。寻找优质高岭土土源、合成纳米分子筛、改进孔道结构和优化活性中心分布是这类催化剂进一步研究发展的方向。

猜你喜欢
晶化重油高岭土
不同环境下粉煤灰合成A型分子筛的研究
重油加氢处理催化剂级配方法和重油加氢处理方法
玻璃冷却速率和锂铝硅微晶玻璃晶化行为、结构相关性
船用调质重油燃烧及减排技术的研究进展
船舶使用850cSt重油的设计研究
晶核剂对烧结法制备Li2O-A12O3-SiO2系微晶玻璃晶化过程的影响
高岭土加入量对Al2O3-SiC质修补料热震性能的影响
煅烧高岭土吸附Zn2+/苯酚/CTAB复合污染物的研究
ABS/改性高岭土复合材料的制备与表征
一种用作橡胶补强剂的改性高岭土的制备方法