激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展

2020-02-22 02:54戴毅田龙果潘贞志陈林宋丽
江苏农业学报 2020年6期
关键词:逆境

戴毅 田龙果 潘贞志 陈林 宋丽

摘要:植物硝酸盐转运蛋白不仅担负着硝酸离子吸收、转运的功能,还参与植物诸多生理发育过程。本文重点介绍了激素和硝酸盐转运蛋白在植物生长发育过程中的相互作用,硝酸盐转运蛋白参与非生物逆境胁迫响应方面的最新研究进展,以及激素和逆境协同参与硝酸盐转运蛋白表达和功能的调控机制,最后对硝酸盐转运蛋白在激素信号传导和抗逆境胁迫中的应用以及未来可能开展的研究方向提出了展望。

关键词:硝酸盐转运蛋白;植物激素;逆境

中图分类号:Q756文献标识码:A文章编号:1000-4440(2020)06-1595-10

Abstract: Plant nitrate transporters are responsible for the absorption and transport of nitrate ions, and participate in various physiological processes of plants. This review focused on the interactions between hormones and nitrate transporters during plant growth and development, the roles of nitrate transporters in abiotic stress, and the synergistic effects of hormone and abiotic stress on the expression and function of nitrate transporters. Finally, the application of nitrate transporter in hormone signal transduction and stress resistance was proposed.

Key words:nitrate transporter;plant hormone;abiotic stress

氮(N)是植物生长发育必需的大量元素之一,氮素不仅是蛋白质、核酸及磷脂等生物大分子的组成成分,也是辅酶、辅基、叶绿素和植物激素等植物生长发育重要成分的构成组分[1-2]。氮素对植物生长发育的影响是十分明显的,氮素缺乏会导致植物细胞中重要物质的合成受阻,功能蛋白活性降低,生长分裂速率减缓,进而抑制营养生长和生殖生长[3]。

植物既能吸收有机氮,也能吸收无机氮,但对于大多数植物来说,吸收的氮大部分是无机氮,主要是硝酸盐(NO-3)和铵盐(NH+4),其中硝酸盐是植物生长发育主要的氮源[4-5]。硝酸盐不仅是营养物质,也是一种信号分子,在打破种子休眠,诱导叶片生长,调控侧根发育,诱导基因表达等方面具有关键调控作用[6-7]。硝酸盐在植物体内的吸收、转运和分配是不断循环的过程,这不仅可以反映植物吸收氮素的效率,同时也可以反映当环境和所需营养发生变化时,这种循环过程是如何受到调控的。本文概述硝酸盐转运蛋白与激素的相互作用,以及逆境胁迫下它们在植物局部或整体发育中的作用,有利于理解硝酸盐对植物代谢、生理和生长发育的影响,以促进农业的可持续发展。

1硝酸盐转运蛋白家族

植物细胞、组织和器官对硝态氮的吸收、转运和分配需要借助转运蛋白和离子通道完成,植物中有NRT1/PTR和NRT2共2类硝酸盐转运蛋白。NRT1/PTR是低亲和性硝酸盐转运系统(LATS)的组成成分,NRT2是高亲和性硝酸盐转运系统(HATS)的组成成分。根据最新命名规则,NRT1/PTR已经被重新命名为NPF[8-9]。有研究发现,在模式植物拟南芥和水稻中分别有53个和93个NPF成员[9-12],其中拟南芥CHL1蛋白是植物中第一个被发现的NPF家族成员,后来被命名为AtNRT1.1或AtNPF6.3[13],之后拟南芥中又有11个NRT1/PTR成员(AtNRT1.2-1.12)被证明与硝酸盐转运有关[10],其他物种(如大豆、黄瓜、苜蓿、水稻、玉米、高粱等)中也报道了许多NPF家族成员[14]。这些NPF家族成员中,除拟南芥NPF6.3和蒺藜苜蓿NRT1.3同时具有高、低亲和力之外,其他NPF家族成员都是低亲和转运蛋白[15-16]。

NRT2属于硝酸盐-亚硝酸盐转运体(NNP)家族,最初是在构巢曲霉中发现的[17]。植物中,人们最先从大麦中分离得到NRT2基因(HvNRT2.1和HvNRT2.2)[18],之后又在烟草、大豆、拟南芥、番茄、水稻、玉米、小麦和菸草等多种植物中鉴定出多个NRT2成员[8]。其中,拟南芥中有7个NRT2成员[19],水稻中有4个NRT2成员[1]。与NRT1/PTR不同的是,植物中大多数NRT2家族成员并不能单独转运NO-3,它们需要与辅助蛋白NAR2(NRT3)结合,形成蛋白复合体才能实现NO-3的转运或吸收[20-21],水稻中已发现2个NAR2成员[22]。

2硝酸盐转运蛋白和激素

氮为植物生长和发育提供了其必需的元素,而激素是植物生长过程中重要的调节物质。植物激素与硝酸盐转运蛋白的关系主要表现在二个方面:一是激素参与硝酸盐转运蛋白的表达调控;二是硝酸盐转运蛋白影响激素的生物合成、运输和信号转导。植物激素与硝酸盐转运蛋白相互影响、相互协调,在植物的生长发育过程中发挥重要作用[23]。

2.1生长素

在植物生长发育过程中,生长素与硝酸盐转运蛋白之间相互影响。生长素通过诱导相关基因表达来促进植物对硝酸盐的吸收。例如,外源施加吲哚-3-乙酸(IAA)会诱导拟南芥AtNRT1.1基因表达,从而增强拟南芥对硝酸盐的吸收能力[24]。但生长素并不能促进所有硝酸盐转运蛋白的表达,它对NRT2.1的转录有抑制作用[25]。硝酸盐转运蛋白也会影响生长素的合成和运输。硝酸盐转运蛋白作为生长素转运体,可以调控生长素在侧根中的积累和运输。例如,拟南芥硝酸盐转运蛋白NRT1.1会从侧根运输生长素,通过抑制侧根生长来响应氮饥饿[13,26-28]。研究生长素调控网络发现,生長素受体AFB3和miRNA393构成的氮响应模块,通过调控硝酸盐响应网络中关键调控元件NAC4转录因子而影响植物根系构型,进而调节植物对外部和内部氮吸收的有效性[29-31]。一些转录因子也可以连接硝酸盐和生长素信号传导途径,调控植物生长发育。例如,菊花转录因子CmTCP20能与生长素应答因子CmARF8结合形成CmTCP20-CmARF8异二聚体,在硝酸盐诱导下调控细胞周期信号,从而影响侧根的生长发育[32]。此外,在大豆、小麦、菠萝、玉米和黑麦草等多种植物中,外源施加NO-3会降低根中生长素含量,而且生长素从地上部到地下部的运输会受到抑制[33-34]。上述研究结果表明,硝酸盐转运蛋白与生长素的关系密切,生长素运输中关键基因的表达受硝酸盐调控,一些硝酸盐转运蛋白参与生长素运输[35]。

2.2细胞分裂素

细胞分裂素(CKs)是一类与植物生长发育密切相关的植物激素[36]。有研究结果表明,氮素的供应会影响CKs的生物合成。例如,提高氮水平会使CKs在玉米根部、木质部、汁液和芽中积累[37]。在拟南芥中,CKs的合成受到磷酸腺苷-异戊烯基转移酶基因AtIPT3的调控,而AtIPT3的表达又受硝酸盐转运蛋白NRT1.1/CHL1(NRT1.1)的调控[37-38]。另外,在许多植物中,提高NO-3水平不仅可以促进细胞分裂素的合成,还能借助硝酸盐转运蛋白调控CKs的运输。例如,在拟南芥中,CKs可以上调NRT1.3、NRT1.4、NRT1.7、NRT2.7等硝酸盐转运蛋白基因的表达,促进氮素从衰老叶片向新叶片转运,从而提高植物光合氮素的利用效率,促进植物生长发育[7,36-37,39]。外源施加CKs会抑制植物对氮素的吸收,这主要是因为CKs的受体AHK3和AHK4会影响硝酸盐转运蛋白的合成,从而抑制了氮素的吸收[40]。例如在拟南芥中,CKs能抑制根系中主要硝酸盐转运蛋白基因(AtNRT1.1、AtNRT1.5、AtNRT2.1、AtNRT2.2和AtNRT2.4)的表达,进而抑制植株对氮素的吸收和转运[41-43]。有研究结果表明,CKs也会正向调控NRT基因(AtNRT2.7,AtNRT1.4和AtNRT1.7)的表达,促进硝酸盐的分布和转运[44-46]。由此可见,CKs可作为一种信号分子调节植物对氮的吸收和同化,而NO-3也能作为信号分子参与植物生长发育中CKs的合成与运输[47-49]。

2.3乙烯

乙烯(Ethylene)是化学结构最简单的气态植物激素,是植物生长发育和适应环境胁迫的调节剂,也是植物养分吸收和利用过程中的关键激素之一[50]。有研究结果表明,植物从低氮转移至高氮环境下生长后,根中会产生大量的乙烯,这是由于NO-3供给的增多可以通过激活ACS和ACO基因的转录来引发乙烯的生物合成[51]。另外,硝酸盐转运蛋白NRT2.1通过参与乙烯的合成途径来影响NO-3的吸收。例如,乙烯合成前体1-氨基环丙烷羧酸(ACC)可促进欧洲油菜(Brassica napus)根系的生长以及根毛长度、数目的增加,但会降低硝酸盐转运蛋白基因BnNRT2.1的表达,从而抑制氮素的吸收[52]。进一步研究发现,施氮后的拟南芥突变体etr1和ein2中,根部AtNRT2.1基因的转录水平降低,NPF6.3(CHL1/NRT1.1)基因的转录水平上升,相反当外界NO-3浓度降低时,AtNRT2.1基因表达上调,从而促进NO-3的吸收[53]。NO-3吸收的增加会使外界NO-3的浓度更低,此时乙烯合成及转导信号增加;乙烯的合成又可以抑制AtNRT2.1基因的表达,进而减少NO-3的吸收,缓解外界NO-3缺乏的状况。这样即使在外界NO-3缺乏时,NO-3的吸收也可以达到一个内部相对平衡的状态,因此AtNRT2.1基因是NO-3吸收途径与乙烯合成及信号转导途径互作网络中的关键因子,乙烯在某种程度上是一种潜在的NO-3信号中转站[23]。

2.4脱落酸

脱落酸(ABA)是植物体5大重要激素之一,参与调控植物多个生长发育过程。目前的研究结果证明,ABA的生物合成与NO-3的供应有关,特别是在根系发育过程中[23]。高浓度硝酸盐抑制ABA的合成,从而影响细胞周期相关基因(CYCD3;1和CDKB1;1)的转录,导致植物侧根生长发育受到抑制[54-55]。在植物的其他发育阶段,ABA的吸收也会受到硝酸盐转运蛋白的调控,如AtNRT1.2(AtNPF4.6)在种子萌发和萌发后的生长过程中介导细胞对ABA的吸收[56]。有研究者认为,硝酸盐与ABA信号之间存在相互作用[57]。例如,Kanno等[56]发现,AtNRT1.2(NPF4.6/AIT1)可以将维管组织中合成的ABA运输到保卫细胞中,来调节茎中气孔的开度。植物受到胁迫时,ABA信号调控因子ABI2与RCAR/PYL/PYR互作,使CBL1-CIPK23蛋白复合体磷酸化,影响硝酸盐转运蛋白的功能[58-59]。

2.5赤霉素

赤霉素(GA)在植物生长发育过程中发挥重要的调控作用,也会影响植物对养分的吸收。外源施加GA能够提高黄瓜中氮代谢酶的活性,增强氮代谢能力,进而促进根系氮素吸收速率[60]。进一步研究发现,GA可以调控黄瓜根中CsNPF3.2/CsNitr1表达水平,影响NO-3吸收速率[61]。另外,Kanno等[56]发现NPF4.1在酵母中参与GA的运输,Chiba等[62]在拟南芥中发现18个NPF成员具有运输GA的能力,其中NPF3.1在低浓度的硝酸盐环境下会影响赤霉素局部的积累和外排,参与植物中GA的运输[63-64]。

3非生物逆境中硝酸盐转运蛋白基因的表达调控

植物并非始终生长在适宜的环境中,并且不能移动去寻找最适环境。所以遭受非生物逆境胁迫时,需要在植物体内发生反应,形成相关调节机制来响应并适应胁迫。植物硝酸盐转运蛋白除了具有转运硝酸盐、激素等物质的功能外,也被证实与植物胁迫防御息息相关。环境胁迫一方面能够调控植物NRT的表达水平,另一方面硝酸盐的转运及含量变化也参与植物对非生物逆境胁迫的防御。

3.1干旱

水是植物生长所必需的物质之一。通常植物吸收的NO-3是随着水从土壤到根部的,但在缺水时,植物无法从土壤中吸收水分,因此根部的氮水平就会降低[65]。在干旱情况下,一些硝酸盐转运蛋白會参与植物对干旱胁迫的应答。例如,干旱胁迫下,苹果根中高亲和力硝酸盐转运体MdNRT2.4基因的转录水平升高,导致氮吸收从低亲和力转运转变成高亲和力转运,从而提高硝酸盐的转运来响应干旱胁迫[66]。在小麦不同基因型、不同生长阶段及不同氮素供应状况下,NRT基因的表达也会受到干旱胁迫的调控[67]。另外,在气孔保卫细胞中过量表达AtNRT1.1基因,会使细胞中NO-3含量增加,引起保卫细胞去极化,从而促进气孔张开,导致植物的干旱耐受性降低[68]。相反,AtNPF4.6/AtNRT1.2可作为脱落酸(ABA)的输入体来调节茎中气孔的开度,从而提高植物的耐旱性,因此该硝酸盐转运蛋白在植物响应干旱胁迫中起正向调控作用[56]。

3.2盐胁迫

盐胁迫对植物造成的伤害主要有2种:一是渗透胁迫,二是离子损伤,两者都会扰乱细胞内离子平衡,使植物根系、光合系统等受损,影响植物的正常生长发育。随着研究的深入,人们发现一些硝酸盐转运蛋白参与植物响应盐胁迫的机制。例如,拟南芥硝酸盐转运蛋白NPF2.3主要在根的中柱鞘中表达,在盐胁迫时,虽然NPF2.3基因的表达水平几乎不受影响,但NPF2.3使得NO-3分泌至根的木质部汁液中,在硝酸盐从根部至芽部的运输中发挥作用,从而提高植物对盐的耐受性[69]。同样,NRT1.5和NRT1.8基因也参与盐胁迫下硝酸盐的转运[65,70]。但不同是,盐胁迫下NRT1.5基因的表达量下降,而NRT1.8基因的表达量上升[71]。这是因为,NRT1.5基因表达量的下降会减少NO-3向芽中的运输,从而防止有害的Na+进入芽中对植物造成伤害[72],同时NRT1.8会通过木质部导管运输NO-3,满足植物生长发育过程中对NO-3的需求[71]。对盐地碱蓬的耐盐性研究发现,在盐胁迫下,盐地碱蓬老叶或成熟叶片中NRT1.7和NRT2.1可以通过韧皮部将NO-3运输到新叶中,来维持植物正常的生长发育[73]。另外,有研究结果表明,拟南芥中的NPF2.3和NPF2.4参与盐胁迫下Cl-的运输,通过减少植物地上部分Cl-的积累,从而缓解Cl-对植物造成的毒害[74];NPF2.5可作为根中Cl-外流的调控因子,在盐胁迫时促使Cl-从芽部外流[75]。这些结果都说明硝酸盐转运蛋白在植物對盐胁迫的适应中承担着直接或间接的重要功能。

3.3酸胁迫

根部细胞对硝酸盐的吸收往往伴随着质子的吸收,因此硝酸盐转运蛋白也会参与植物对质子毒性的耐受。在酸性生长环境中,植物根部会吸收大量NO-3,同时伴随着吸收大量的H+,促使根际pH提高,从而缓解H+对植物的毒害[76]。AtNPF6.3/AtNRT1.1/CHL1主要负责根系中硝酸盐的吸收和转运,它是一种能同时从土壤或培养基中运输1个硝酸根离子和2个H+到根细胞的转运体。NRT1.1介导的H+耐受就需要足够的NO-3,与硝酸根离子感应阶段无关,而且H+胁迫可以在转录和翻译水平正向调节NRT1.1的表达,从而调控NRT1.1对硝酸盐的吸收[77]。另外,拟南芥NPF2.7基因主要在成熟根的皮层表达,在酸胁迫下NPF2.7可以调控NO-3在根边缘细胞中的转运[78]。水稻NRT2.3b基因位于质膜上,并且主要在韧皮部表达,在水稻中过表达该基因可以提高对酸胁迫的耐受能力,促进水稻从外界环境中吸收硝酸盐并向地上部输送,从而提高产量[79]。

3.4重金属胁迫

土壤中镉的含量会影响植物对硝酸盐的转运。相关研究结果表明,AtNPF7.2/AtNRT1.8的表达水平在受到Cd2+胁迫时会明显上调,参与从木质部导管卸载硝酸盐的过程,调控硝酸盐在根部的重新分配[71]。另外,AtNPF7.3/AtNRT1.5也参与硝酸盐的重新分配,但其表达量在受到Cd2+胁迫时下调,这可能是因为木质部中NRT1.5的负荷功能有助于将硝酸盐保留在根中,这样就可以和NRT1.8基因协同调控硝酸盐向根的重新分配,并且这种再分配被认为是植物对各种逆境的常规反应[65,71,80]。Cd2+胁迫也会抑制AtNRT1.1的表达,从而抑制拟南芥根中NO-3的吸收,打乱根中NO-3的平衡[81]。相反,植物体内硝酸盐的供应与锌积累呈正相关。例如,拟南芥中NRT1.1活性的缺乏会减轻锌(Zn)胁迫导致的植物光合损伤和生长抑制,这说明NRT1.1可以通过硝酸盐依赖的途径调控植物体内Zn的积累[82]。

3.5氮饥饿

在氮饥饿过程中,硝酸盐转运蛋白的表达水平受到复杂的调控。例如,小麦中TaNRT1和TaNRT2家族不同成员表现出不同的响应模式,并且同一成员在不同胁迫时间点的表达量也存在差异[67];拟南芥叶片中NRT1.7的表达量在氮饥饿时上调,维持硝酸盐的运转[46]。同样,氮饥饿还会诱导启动植物根中的高亲和力运输系统[83]。研究发现,拟南芥NRT2.1和NRT2.2主要分布在根成熟区域的皮层细胞中,在缺少氮时,NRT2.1和NRT2.2可以调节NO-3的HATS,从而影响硝酸盐的吸收和根系发育[84-86]。此外,研究人员发现NRT2.1、NRT2.2、NRT2.4和NRT2.5对于成熟植物应对严重的氮饥饿至关重要[87],其中2个高亲和硝酸盐转运蛋白基因NRT2.4和NRT2.5在氮饥饿时被高度诱导,并在氮饥饿条件下芽中韧皮部硝酸盐的运输中发挥潜在作用[87-88]。因此,我们推测这些基因在植物响应氮饥饿过程中起着重要作用,它们能提高植物对NO-3的利用效率,使植物适应短期的氮饥饿,维持正常的生命活动。不同基因表达量之间的差异反映了它们在响应氮饥饿胁迫中的不同功能。

4激素和逆境协同参与硝酸盐转运蛋白的功能调控

植物本身的发育信号和外部环境因子可转变成内源激素信号,间接调节植物的生长发育,因此激素和逆境往往协同参与硝酸盐转运蛋白的功能调控。例如,在低温条件下,施用赤霉素(GA3)可使黄瓜幼苗期根中NRT1基因的表达水平上升,同时调控编码硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)基因的表达水平,来提高根系吸收NO-3的速率,这说明外源施加GA3,可以促使植物通过硝酸盐转运蛋白调控NO-3的吸收效率,来响应低温对植物造成的伤害[60-61,89]。干旱胁迫下,增强NRT1.2(NPF4.6/AIT1)基因的表达可以促进植物体内ABA含量的增加,进而增强植物气孔的闭合来响应干旱胁迫[56]。

另外,逆境下植物激素与硝酸盐转运蛋白有时会共同发挥作用。有研究结果表明,乙烯对低氮下高亲和硝酸根离子的吸收有抑制作用,而NRT2.1的表达对乙烯合成的前体物质1-氨基环丙烷羧酸(ACC)和乙烯合成拮抗剂氨基乙氧基乙烯基甘氨酸(AVG)十分敏感[51-52]。由此,研究人员提出一个模型:NRT2.1的表达在外部NO-3浓度低时上调,从而提高了高亲和硝酸根离子的吸收,使外部NO-3持续减少;而NO-3减少会诱导乙烯的生物合成以及信号传导,降低NRT2.1的表达,从而减少植物中NO-3的吸收,缓解外部缺少NO-3时的胁迫,使得植物在动态土壤环境中可以较好地调节氮的吸收[53]。

植物在生长发育过程中往往会同时受到多种逆境胁迫。有研究结果表明,多种逆境或激素可协同调控不同硝酸盐转运蛋白的表达。例如,干旱、低温、重金属等非生物胁迫会诱导NRT1.8表达,抑制NRT1.5表达,调控NO-3的吸收和转运,从而减少逆境胁迫对植物造成的伤害[65,71]。同样,芥菜中多个NRT基因,在低温、热、盐和渗透胁迫下表达水平发生变化,说明NRT基因可能在逆境导致的芥菜生长发育抑制中起關键作用[90]。

5展望

近年来在硝酸盐转运蛋白功能研究方面取得了较多进展,本文也总结了目前植物中已报道的部分硝酸盐转运蛋白的功能(表1),但是我们对硝酸盐信号转导、吸收和运输分子机制的了解还远远不够。例如,有关新型植物激素(如油菜素甾醇、独脚金内酯、水杨酸类、茉莉酸类和多胺等)是如何调控硝酸盐转运蛋白的报道较少。尽管有研究结果表明,油菜素甾醇可以诱导硝酸盐转运蛋白基因的表达,拟南芥根部有一类C末端编码肽家族基因,在缺氮时可以调控NRT基因的表达,促使根部吸收硝酸根离子[91],但是这些调控机制都不是很清楚。另外,硝酸盐转运蛋白不仅参与植物的多个生长发育过程,而且其调控机制十分复杂。例如,硝酸盐转运蛋白的表达受昼夜节律的调控,其蛋白质活性水平也受到调控,这些复杂的代谢调控网络需要深入研究。

中国是农业大国,农用耕地占世界耕地面积的1/10,但是氮肥使用量却高于世界氮肥使用总量的1/4。由于植物对氮素的吸收率很低,造成大量氮素不能被合理利用而浪费,过量氮肥流入生态系统后,又会造成严重的环境污染问题。因此,提高植物氮肥的利用率是目前亟待解决的关键科学问题。提高植物的氮素利用率对于改良植物品种质量具有重要意义,不仅可以节约资源,减少污染,还可以获得高产、高质的优良品种。目前模式植物中有关硝酸盐转运蛋白的研究较多,但是在农作物中的研究较少。所以,深入研究农作物中硝酸盐转运蛋白的功能及调节机制,可以为培育氮高效利用的农作物新品种提供新的研究思路和切入点。

参考文献:

[1]蒋志敏, 王 威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10):1060-1071.

[2]FRINK C R, WAGGONER P E, AUSUBEL J H. Nitrogen fertilizer: retrospect and prospect[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1175-1180.

[3]STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background [J]. Plant, Cell and Environment, 1999, 22(6): 583-621.

[4]SURYA K, YONG M B, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011, 62(4): 1499-1509.

[5]WANG M Y, SIDDIQI M Y, RUTH T J, et al. Ammonium uptake by rice roots (II. Kinetics of 13NH+4 influx across the plasmalemma) [J]. Plant Physiology, 1993, 103(4): 1259-1267.

[6]ALBORESI A, GESTIN C, LEYDECKER M T, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant, Cell and Environment, 2005, 28(4): 500-512.

[7]WALCH-LIU P, NEUMANN G, BANGERTH F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. Journal of Experimental Botany, 2000, 51(343): 227-237.

[8]WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.

[9]LRAN S, VARALA K, BOYER J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1): 5-9.

[10]WANG Y Y, CHENG Y H, CHEN K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122.

[11]RYOICHI A, HIROSHI H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction[J]. Breeding Science, 2006, 56(3): 295-302.

[12]FENG H, YAN M, FAN X, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332.

[13]TSAY Y F, SCHROEDER J I, FELDMANN K A, et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72(5): 705-713.

[14]VON WITTGENSTEIN N J, LE C H, HAWKINS B J, et al. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants[J]. BMC Evolutionary Biology, 2014, 14(1): 11.

[15]LIU K H, HUANG C, TSAY Y. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J]. Plant Cell, 1999, 11(5): 865-874.

[16]MORRE-LE P M C, LAURE V, ALAIN H, et al. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2011, 62(15): 5595-5605.

[17]UNKLES S E, HAWKER K L, GRIEVE C, et al. crnA encodes a nitrate transporter in Aspergillus nidulans[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(1): 204-208.

[18]TRUEMAN L J, ONYEOCHA I, FORDE B G. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters[J]. Plant Physiology and Biochemistry, 1996, 34(5): 621-627.

[19]MILLER A J, FAN X, ORSEL M, et al. Nitrate transport and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.

[20]KOTUR Z, MACKENZIE N, RAMESH S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 2012, 194(3): 724-731.

[21]KOTUR Z, GLASS A D M. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana[J]. Plant, Cell and Environment, 2015, 38(8): 1490-1502.

[22]FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.

[23]KROUK G. Hormones and nitrate: a two-way connection[J]. Plant Molecular Biology, 2016, 91(6): 599-606.

[24]鄭冬超,夏新莉,尹伟伦. 生长素促进拟南芥AtNRT1.1基因表达增强硝酸盐吸收[J]. 北京林业大学学报, 2013, 35(2): 80-85.

[25]ASIM M, ULLAH Z, OLUWASEUN A, et al. Signalling overlaps between nitrate and auxin in regulation of the root system architecture: insights from the Arabidopsis thaliana [J].International Journal of Molecular Sciences,2020,21(8): 2880.

[26]LIU P W, IVANOV L L, FILLEUR S, et al. Nitrogen regulation of root branching [J]. Annals of Botany, 2006, 97(5): 875-881.

[27]KROUK G, LACOMBE B, BIELACH A, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927-937.

[28]CHAI S, LI E, ZHANG Y, et al. NRT1.1-mediated nitrate suppression of root coiling relies on PIN2-and AUX1-mediated auxin transport[J]. Frontiers in Plant Science, 2020, 11: 671.

[29]VIDAL E A, ARAUS V, LU C, et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4477-4482.

[30]VIDAL E A, MOYANO T C, RIVERAS E, et al. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12840-12845.

[31]ASIM M, ULLAH Z, XU F, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11(6): 633.

[32]FAN H M, SUN C H, WEN L Z, et al. CmTCP20 plays a key role in nitrate and auxin signalling-regulated lateral root development in chrysanthemum[J]. Plant and Cell Physiology,2019, 60(7):1581-1594.

[33]LIU J X, AN X, CHENG L, et al. Auxin transport in maize roots in response to localized nitrate supply [J]. Annals of Botany, 2010, 106(6): 1019-1026.

[34]PAVLIKOVA D, NEUBERG M, ZIZKOVA E, et al. Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants[J]. Plant Soil and Environment, 2012, 58(8): 367-372.

[35]GUTIRREZ R A, LEJAY L V, DEAN A, et al. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis[J]. Genome Biology, 2007, 8: R7.

[36]SAKAKIBARA H. Cytokinins: activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006,57:431-449.

[37]TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2004, 45(8):1053-1062.

[38]MIYAWAKI K, MATSUMOTO-KITANO M, KAKIMOTO T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate[J]. The Plant Journal, 2004, 37:128-138.

[39]李志康,嚴冬,薛张逸,等. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4): 311-324.

[40]SEGUELA M, BRIAT J F, VERT G, et al. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway[J]. The Plant Journal, 2008, 55(2): 289-300.

[41]FRANCO-ZORRILLA J M, MARTIN A C, SOLANO R, et al. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis[J]. The Plant Journal, 2002, 32(3): 353-360.

[42]MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5): 779-789.

[43]GUO Q, LOVE J, SONG J, et al. Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in Brassica napus[J]. Functional Plant Biology, 2017, 44(8): 832-844.

[44]CHIU C C, LIN C S, HSIA A P, et al. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant and Cell Physiology, 2004, 45(9): 1139-1148.

[45]CHOPIN F, WIRTH J, DORBE M F, et al. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane[J]. Plant Physiology and Biochemistry, 2007, 45(8): 630-635.

[46]FAN S C, LIN C S, HSU P K, et al. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9): 2750-2761.

[47]KIBA T, KUDO T, KOJIMA M, et al. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2011, 62(4): 1399-1409.

[48]KUDO T, KIBA T, SAKAKIBARA H. Metabolism and long-distance translocation of cytokinins[J]. Journal of Integrative Plant Biology, 2010, 52(1): 53-60.

[49]SHTRATNIKOVA V Y, KUDRYAKOVA N V, KUDOYAROVA G R, et al. Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium[J]. Russian Journal of Plant Physiology, 2015, 62(6): 741-752.

[50]DUGARDEYN J, STRAETEN D V D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation[J]. Plant Science, 2008, 175(1/2): 59-70.

[51]TIAN Q Y, SUN P, ZHANG W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009, 184(4): 918-931.

[52]LEBLANC A, RENAULT H, LECOURT J, et al. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape[J]. Plant Physiology, 2008, 146: 1928-1940.

[53]ZHENG D, HAN X, AN Y, et al. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell and Environment, 2013, 36(7):1328-1337.

[54]SIGNORA L, DE SMET I, FOYER C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. The Plant Journal, 2001, 28(6): 655-662.

[55]DE SMET I, SIGNORA L, BEECKMAN T, et al. An abscisic acid-sensitive checkpoint in lateral root development in Arabidopsis[J]. The Plant Journal, 2003, 33(3): 543-555.

[56]KANNO Y, HANADA A, CHIBA Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653-9658

[57]GUAN P. Dancing with hormones: A current perspective of nitrate signaling and regulation in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:1697.

[58]HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.

[59]LRAN S, EDEL K H, PERVENT M, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015, 8(375): ra43.

[60]白龍强,刘玉梅,慕英,等. 赤霉素对根区亚低温下黄瓜幼苗氮代谢与吸收的影响[J]. 园艺学报, 2018, 45(10): 1917-1928.

[61]SUGIURA M, GEORGESCU M N, TAKAHASHI M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts[J]. Plant Cell Physiology, 2007, 48(7): 1022-1035.

[62]CHIBA Y, SHIMIZU T, MIYAKAWA S, et al. Identification of Arabidopsis thaliana NRT1/PTR family (NPF) proteins capable of transporting plant hormones[J]. Journal of Plant Research, 2015, 128(4): 679-686.

[63]DAVID L C, BERQUIN P, KANNO Y, et al. N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis[J]. Planta, 2016, 244: 1315-1325.

[64]IZMAILOV S F, NIKITIN A V. Nitrate signaling in plants: mechanisms of implementation[J]. Russian Journal of Plant Physiology, 2020, 67(1): 31-44.

[65]CHEN C Z, LV X F, LI J Y, et al. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiology, 2012, 159(4): 1582-1590.

[66]BASSETT C L, BALDO A M, MOORE J T, et al. Genes responding to water deficit in apple (Malus×domestica Borkh.) roots[J]. BMC Plant Biology, 2014, 14:182.

[67]DUAN J, TIAN H, GAO Y. Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies[J]. Crop and Pasture Science, 2016, 67(2): 128-136.

[68]GUO F Q, YOUNG J, CRAWFORD N M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J]. The Plant Cell, 2002, 15(1): 107-117.

[69]TAOCHY C, GAILLARD I, IPOTESI E, et al. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress[J]. The Plant Journal, 2015,83 (3): 466-479.

[70]ZHANG G B, MENG S, GONG J M. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation[J]. International Journal of Molecular Sciences, 2018, 19: 3535.

[71]LI J Y, FU Y L, PIKE S M, et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5): 1633-1646.

[72]LIN S H, KUO H F, CANIVENC G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9): 2514-2528.

[73]MA Y, YANG Y, LIU R, et al. Adaptation of euhalophyte Suaeda salsa to nitrogen starvation under salinity[J]. Plant Physiology and Biochemistry, 2020, 146: 287-293.

[74]LI B, BYRT C, QIU J, et al. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis[J]. Plant Physiolpgy, 2016, 170(2): 1014-1029.

[75]LI B, QIU J, JAYAKANNAN M, et al. AtNPF2. 5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 7: 2013.

[76]YANG Y, QIN Y, XIE C, et al. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase [J]. The Plant Cell, 2010, 22(4): 1313-1332.

[77]FANG X Z, TIAN W H, LIU X X, et al. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis[J]. New Phytologist, 2016, 211(1): 149-158.

[78]SEGONZAC C, BOYER J C, IPOTESI E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter[J]. The Plant Cell, 2007, 19(11): 3760-3777.

[79]FAN X, TANG Z, TAN Y, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (26): 7118-7123.

[80]ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998.

[81]MAO Q Q, GUAN M Y, LU K X, et al. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis[J]. Plant Physiology, 2014, 166(2): 934-944.

[82]PAN W, YOU Y, WENG Y N, et al. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110104.

[83]KIBA T, KRAPP A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture[J]. Plant Cell Physiology, 2016, 57(4): 707-714.

[84]REMANS T, NACRY P, PERVENT M, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology, 2006, 140: 909-921.

[85]FILLEUR S, DORBE M F, CEREZO M, et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake[J]. FEBS Letters, 2001, 489(2): 220-224.

[86]CEREZO M, TILLARD P, FILLEUR S, et al. Major alterations of the regulation of root NO-3 uptake are associated with the mutation of NRT2.1 and Nrt2.2 genes in Arabidopsis[J]. Plant Physiology, 2001, 127: 262-271.

[87]LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241.

[88]KIBA T, FERIA-BOURRELLIER A B, LAFOUGE F, et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24(1): 245-258.

[89]DAVIRE J M, ACHARD P. Gibberellin signaling in plants[J]. Development, 2013, 140 (6): 1147-1151.

[90]GOEL P, SINGH A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L.[J]. PLoS One, 2015, 10(11): e0143645.

[91]TABATA R, SUMIDA K, YOSHII T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207): 343-346.

(責任编辑:王妮)

猜你喜欢
逆境
超越逆境
疫情反复下,纺企逆境破局
逆境之中育英才
How adversity makes you stronger逆境如何让你更强大
人生的逆境
任何人都可以发光发热
生活因逆境而精彩
智珠二则
逆境不逆
完形填空Ⅳ