张广雨 褚德朋 刘元德 牛纪军 陈芊如 NailaIlyas 韦建玉 李义强
摘 要:为研究不同用量生物炭及海藻肥对烟草生长及青枯病的影响,以烟草NC102为试验材料,在常年青枯病发生较严重的地块采用完全随机设计,在常规施肥基础上,设置处理CK(空白对照)、BC1(9000 kg/hm2生物炭)、BC2(15 000 kg/hm2生物炭)、BC3(22 500 kg/hm2生物炭)、SW(2250 kg/hm2海藻肥)、BC2+SW(15 000 kg/hm2生物炭+2250 kg/hm2海藻肥)。结果发现,海藻肥和生物炭单一或混合施用均能促进烟草生长,最大量生物炭的处理虽然抑制烤烟团棵期生长,但可以促进烤烟旺长期的生长。生物炭和海藻肥单一或混合施用均显著提高了土壤pH及部分土壤养分含量,降低了烟草青枯病发病率及病情指数,有利于提高烤烟产量和中上等烟比例,协调烟叶化学成分,提升烤后烟叶内在品质。利用Pearson相关系数分析了不同处理土壤理化性质与烟草青枯病病情指数之间的关系,结果发现,适当提高土壤酸碱度可作为酸性土壤主产区防控烟草青枯病、提高烤烟产质量的重要策略。
关键词:生物炭;海藻肥;青枯病;pH;烤烟
中图分类号:S572.06 文章编号:1007-5119(2019)05-0015-08 DOI:10.13496/j.issn.1007-5119.2019.05.003
Abstract:To investigate the effects of different amounts of biochar and seaweed fertilizers on tobacco growth and resistance to bacterial wilt, field experiment was conducted with complete random design using tobacco NC102 as material in the tobacco bacterial wilt disease-prone areas. On the basis of conventional fertilization, six treatments were set including CK (control), BC1 (9000 kg/ha biochar), BC2 (15 000 kg/ha biochar), BC3 (22 500 kg/ha biochar), SW (2250 kg/ha seaweed fertilizer) and BC2 + SW (15 000 kg/ha biochar+2250 kg/ha seaweed fertilizer) .The results showed that single or combined application of seaweed fertilizer and biochar whether promoted the growth of tobacco. Although excessive application of biochar inhibited tobacco growth at rosette stage, it promoted growth at vigorous growing stage. Furthermore, the application of biochar and seaweed fertilizer significantly increased soil pH and soil nutrient content, reduced the incidence of tobacco bacterial wilt and its disease index, increased the yield of flue-cured tobacco and the proportion of middle and superior tobacco leaves, improved the intrinsic quality of tobacco leaves by coordinating the chemical composition. The Pearson correlation coefficient was used to reflect the relationship between the physical and chemical properties of soil and the indicators of tobacco bacterial wilt of different treatments. The results showed that appropriately improving soil pH can be an important strategy to prevent and control tobacco bacterial wilt and improve the quality of flue-cured tobacco in the main acid producing areas.
Keywords:biochar; seaweed fertilizer; bacterial wilt; pH; flue-cured tobacco
近年來,生物炭与海藻肥作为土壤改良剂在农业生产上的研究及应用越来越多。生物炭是指生物质在无氧或限氧条件下经热解得到的一种碳质能源材料,具有比表面积大、多孔、吸附能力强、稳定性强等特点[1]。研究表明,施用生物炭可以调节土壤pH[2],提高土壤保水保肥能力[3],改善作物根系生长环境[4],从而促进烟草、玉米、水稻等作物生长,提高其品质[5-7],并在烟草黑胫病、烟草青枯病等土传病害防治方面表现出较大的潜力[8-9]。烟草青枯病是一种典型的土传病害,也是危害烟草的重要病害,发病后植株会慢慢枯萎直至死亡,对烟草的产量及品质造成重大影响[10],生物炭在促进烟草生长及防控烟草青枯病方面表现出较大潜力,但其影响青枯病抗性机制方面尚缺乏系统研究。海藻肥能提高玉米、棉花等作物的产质量,并对棉花黄萎病[11]、向日葵菌核病[12]等具有一定的防治效果,但海藻肥与生物炭耦合输入在影响烟草生长及烟草青枯病发生危害方面的研究尚属空白。本文通过比较不同用量生物炭及与海藻肥混施对烟草生长、土壤性状及青枯病发生的影响,筛选出利于防控烟草青枯病及烟草生长的高效配方,并分析其相关性,为建立基于生物炭的绿色、高效烟田土壤保育模式提供理论基础和实践借鉴。
1 材料与方法
1.1 试验材料
试验于2018年4—9月在山东省临沂市沂水现代烟草科技园(35°50'53" N, 118°37'48" E)进行,供试烟草品种为NC102,土壤类型为褐土。按照当地生产技术方案和烟草肥料需求,施用撒可富复合肥750 kg/hm2,豆饼450 kg/hm2,硫酸钾130 kg/hm2,氮磷钾比例为m(N)∶m(P2O5)∶m(K2O)=1∶0.8∶2.3。供试生物炭由玉米秸秆粉碎后在400~500 ℃厌氧条件下制备而成,由沂水现代烟草科技园提供,其理化性质为pH 10.13,总氮1.79%,全磷0.43%,全钾3.63%。海藻肥由青岛海大生物集团有限公司提供,其理化性质为pH 8.16,总氮0.29%,全磷0.15%,全钾0.43%,有机质含量45.5%,海藻多糖0.052%,海藻酸含量0.12%。
1.2 试验设计
根据往年青枯病发生情况和土壤营养状况,进行小区试验,设置6个处理(表1),每小区30株,行株距为110 cm × 50 cm,重复3次,所有小区随机排列。供试生物炭于起垄前在地表均匀撒施,氮磷钾复合肥条施后起垄,正常移栽。供试海藻肥与氮磷钾肥混合条施后起垄,正常移栽。
1.3 测定指标及方法
1.3.1 调查烤烟农艺性状 分别在团棵期(移栽后30 d)、旺长期(移栽后60 d)每小区定点10株测量主要农艺性状,其中叶面积=叶片长×叶片宽×0.6345[5]。
1.3.2 统计青枯病害 在旺长期(移栽后60 d)和中部烟叶采收期(移栽后90 d)调查各小区青枯病发病株数,并进行病害严重度分级。分级标准参照GB/T 23222—2008 烟草病虫害分级及调查方法。
发病率= (发病株数/调查总株数) ×100%;
病害指数=[∑(各级病株×该病级值)/(调查总株数×最高级值)]×100。
1.3.3 土壤理化性质测定 移栽后60 d,随机在不同处理区取土壤样品并充分混匀,风干后过筛,参照土壤农化分析标准检测方法测量其理化性质:土壤pH用水浸提法[m(水)∶m(土)=2.5∶1];土壤有机质用重铬酸钾法;速效氮用碱解扩散法;速效磷用碳酸氢钠浸提钼锑抗比色法;速效钾用醋酸铵浸提-火焰光度法[13]。
1.3.4 烤后烟叶产量与品质 烘烤后选取C3F烟叶测定其化学成分。总糖、还原糖、烟碱、总氮、氯含量、钾含量采用Skalar连续流动分析仪测定[5]。统计烤后烟叶上中等烟比例、均价、产量和产值。
1.4 数据处理
采用Excel对数据进行整理,R.3.5.2进行主成分分析,采用SPSS 17.0进行方差分析和Pearson相关分析,多重比较采用Duncan法。
2 结 果
2.1 不同处理对烤烟农艺性状的影响
从表2可以看出,在团棵期BC2、BC2+SW处理株高显著高于CK,BC3处理株高低于CK。BC1和BC2处理有效叶数显著高于CK,BC3处理低于对照。BC1最大叶长显著高于对照,BC3处理最大叶长和最大叶面积显著低于BC1和BC2处理。BC2处理最大叶宽较CK提高了31.84%,显著高于其他处理。旺长期各处理株高的差异逐渐减小,仅BC2处理显著高于其他处理。有效叶数BC2、BC1、SW处理显著高于对照。最大叶长、叶宽和叶面积,BC2和BC3处理显著高于对照。
团棵期,低量和中量生物炭对烤烟生长的促进作用随着生物炭用量增加而增加,但最大用量生物炭对烟草生长表现出一定的抑制作用;而在旺长期,最大用量生物炭(BC3)对烟草生长的抑制作用转变为促进作用。施用海藻肥处理在烟草旺长期以前优于其与生物炭混施处理,而海藻肥與生物炭混施对烟草生长促进作用在旺长期以后优于施用海藻肥处理。综合比较,施用15 000 kg/hm2生物炭(BC2)对促进烟草生长效果最好。
2.2 不同处理对青枯病害的影响
旺长期和中部烟叶采收时调查结果(表3)发现,施用生物炭和海藻肥降低了青枯病发病率,其中BC2+SW混合处理对青枯病的防控效果最好,单一处理旺长期发病率在3.33%~6.06%,明显好于对照(发病率31.70%),抑制青枯病的效果明显。中部烟叶采收期,青枯病发病呈现明显上升趋势,不同处理青枯病发病率为13.60%~66.73%。相应地,在病情指数方面,旺长期调查,BC2+SW混合处理病情指数为0,单一处理病情指数在0.38~2.59之间,远小于对照25.70,中部叶采收期,病情指数明显上升,但仍明显低于对照。这说明施用生物炭和海藻肥均能减轻青枯病发生危害程度。
2.3 不同处理对土壤理化性质的影响
从表4可以看出,与对照相比,添加海藻肥和生物炭显著提高了土壤pH,其中施用海藻肥处理pH最高。不同施肥处理均显著提高了土壤有机质含量,其中施用生物炭处理有机质含量随着生物炭的施用量增加而增加,BC2+SW处理土壤有机质含量显著高于SW处理,但与BC2处理差异未达显著水平。不同处理均显著提高了碱解氮含量,生物炭处理对碱解氮含量提升效果更明显。BC3处理碱解 氮含量最高,BC1与BC2处理无显著差异,BC2+SW处理碱解氮含量显著高于SW处理。BC1处理速效磷含量与SW处理差异不显著,其余处理间差异均达显著水平。BC1处理速效钾含量与CK差异未达显著水平,其余处理均差异显著,较CK提高31.69%~92.38%。
4 结 论
生物炭和海藻肥能提高土壤pH、有机质、碱解氮、速效磷和速效钾含量,且随着生物炭用量增加而增加;通过改善土壤环境促进了烤烟生长发育、提高了产量产值、协调了烟叶化学成分,进而提高了烤后烟叶内在品质;海藻肥和生物炭对土壤pH的提升和优化,是降低烟草青枯病发病率和病情指数的最显著相关效应;因此,适当提高土壤酸碱度可作为酸性土壤产区防控烟草青枯病、提高烤烟产质量的重要策略,生物炭和海藻肥对烟草青枯病抗性机理还有待进一步研究。
参考文献
WANG Y H, ZHAO Y F, KONG F Y, et al. Effects of pH on growth characteristics of Ralstonia solanacearum in tobacco[J]. Tobacco Science & Technology, 2018, 51(9): 27-32.
2018,52(6):863-867,902.
JI G F, WANG Z P, ZHANG S W, et al. Effects of biochar on C/N value of cinnamon soil in tobacco growing areas and the root growth of flue-cured tobacco[J]. Journal of Henan Agricultural University, 2018, 52(6): 863-867, 902.
GONG S Y, ZHONG S R, ZHANG S C, et al. Effects of biochar on growth, yield and quality of flue-cured tobacco[J]. Crops, 2018(2): 154-160.
LU J J, GAO C H, LI J H, et al. Effect of biochar on soil nutrients and corn growth in farmland of loess area[J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 92-99.
YU Y L, WANG R M, HOU P F, et al. Effects of returning nitrogen by biochar loading on paddy growth, root morphology, and nitrogen use efficiency[J]. Environmental Science, 2018, 39(11): 5170-5179.
LIU H, ZHANG L M, ZHOU Q M, et al. Effects of continuous application of biochar under flue-cured tobacco continuous cropping on black shank, dry matter and yield and quality of flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1435-1441.
AO R Y, WANG J, JI C L, et al. Field identification and agricultural preventive measures for tobacco bacterial wilt[J]. Plant Doctor, 2018, 31(10): 39-41.
YANG Z D, ZUO R G. Test on the control of cotton blight and verticillium wilt by seaweed fertilizer[J]. Rural Science & Technology, 2006(1): 25.
YI G H. "Haizhuangyuan 818" bacterial fertilizer control for sunflower sclerotinia[J]. Xinjiang Farm Research of Science and Technology, 2007(6): 48-49.
BAO S D. Soil agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
ZHENG J Y, ZHANG Z F, CHENG S, et al. Effect of rice husk biochar on soil nutrients of tobacco field, yield and quality of tobacco leaves in land consolidation areas[J]. Chinese Tobacco Science, 2016, 37(4): 6-12.
WANG Y, SONG W J, WU Y H, et al. Effects of returning wheat straw to soil on leaf development, yield and quality of tobacco[J]. Chinese Tobacco Science, 2018, 39(2): 32-38.
GAO F, YANG F J, WU X, et al. Effects of biochar application on organic matter content and enzyme activity in rhizosphere soil of chinese cabbage[J]. Chinese Journal of Soil Science, 2019, 50(1): 103-108.
CHEN S, LONG S P, CUI X W, et al. Affect of rice husk biochar to soil nutrient and tobacco growth[J]. Crop Research, 2016, 30(2): 142-148.
SUN Y G, YAN H F, SHI Y, et al. Effects of ocean soil conditioner on soil physicochemical properties and flue-cured tobacco growth and yield[J]. Journal of Agricultural Science and Technology, 2017, 19(3): 82-89.
ZHAO D F, XU J, LUO X, et al. Effect of biochar on soil nutrients, growth and chemical composition of tobacco[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(3): 85-92.
PAN J H, ZHUANG S Y, SHI X Z, et al. Effects of soil amendments on yield and quality of tobacco and soil properties of slope upland in south Anhui[J]. Soil, 2016, 48(5): 978-983.
YE X F, LI Z P, YU X N, et al. Effect of biochar application rate on quality of flue-cured tobacco leaves and carbon pool in tobacco growing soil[J]. Acta Tabacaria Sinica, 2015, 21(5): 33-41.
MAO J, HE X B, XU Y Q, et al. Effect of biochar fertilizer on yield and quality of flue-cured tobacco in central Henan[J]. Journal of Henan Agricultural Sciences, 2019, 48(2): 48-53.
YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2016.