董鑫旭 ,冯强汉,王 冰,杨 勃,张永洁,袁嘉赓,朱玉双
(1.西北大学大陆动力学国家重点实验室/地质学系,陕西西安 710069;2.中国石油长庆油田分公司第三采气厂,内蒙古鄂尔多斯 017300)
致密砂岩气在天然气产量中占比较高,已成为非常规油气勘探与开发的热点与现实领域,未来具有良好的发展前景。“低孔、低渗透、低丰度”的三低特性成为制约苏里格气田开发的瓶颈,而苏里格西部高含水的特征又为天然气的合理开发增加了难度[1-2]。苏里格气田在漫长的地质历史过程中经长期沉积和众多成岩作用形成了复杂的孔喉特征,致使渗流规律复杂多样。近年来,中外众多学者对致密砂岩气的孔隙结构及渗流规律进行了不同角度、不同层次的分析。尚婷等在岩心观察的基础上,经扫描电镜、高压压汞等测试分析,得出致密砂岩气储层物性差、非均质性强且影响因素众多[3];李海燕等以非均质参数为依据,采用聚类分析的方法对苏里格地区的致密孔喉结构进行定量表征[4];刘登科等根据孔喉结构与流体赋存特征研究,得出细小喉道及黏土矿物使水膜厚度增大堵塞渗流通道,从而使可动流体饱和度降低[5]。前人研究主要借用实验参数定量分析了孔喉特征与多相流体流动性的关系,未能定性与定量相结合揭示孔喉特征对渗流规律的影响。笔者以苏里格西部盒8 段储层为研究对象,以铸体薄片、高压压汞等分析测试为基础,采用微观可视化真实砂岩模型气水驱替实验、多相渗流实验,从微观的角度出发将定性与定量相结合,对致密砂岩储层气水渗流规律进行剖析,以期为苏里格西部气藏有效评价以及进一步提高采收率提供参考资料与理论依据。
鄂尔多斯盆地属中生代大型沉积盆地,整体轮廓呈矩形,面积约为25×104km2,广义的总面积达到36×104km2。苏里格西部位于鄂尔多斯盆地伊陕斜坡西北部,是苏里格气田勘探、开发的重点区域。区域构造为一近南北向展布的西倾单斜,平均坡降为4~7 m/km,除少数鼻状构造外大都较为平缓,不发育复杂微构造,因而形成大面积岩性气藏,具有含气面积广、含气层系多、储量丰富的特点[6-8]。
根据岩心观察结合前人研究可知,研究区盒8段上亚段为曲流河三角洲平原沉积,盒8 段下亚段为辫状河三角洲平原沉积[9-10]。由于上古生界盒8段主要储层砂岩经历了漫长的地质作用,颗粒与颗粒之间逐渐演变为线状的紧密接触,储集岩中原生孔隙大部分遭受破坏,取而代之的是残余粒间孔、各种可溶性矿物的次生溶孔以及高岭石晶间孔,构成了盒8 段低孔、低渗透的砂岩储集体系[11-13]。研究区储层物性整体较差,分析测试结果显示孔隙度、渗透率均值分别为7.2%和0.48 mD,属典型致密砂岩气藏。
苏里格西部盒8 段岩石多呈现灰白色、浅灰绿色,表明目的层处于弱还原环境[14]。岩石类型以粗粒、中-粗粒石英砂岩和岩屑石英砂岩为主(图1a,图1b),碎屑颗粒大多呈次棱角状,分选、磨圆中等。铸体薄片资料分析表明,储层岩石骨架颗粒以石英为主,岩屑次之,长石少见或未见。统计显示,盒8段上亚段石英颗粒占骨架颗粒平均比例为88.1%,低于下亚段的90.0%;岩屑组分盒8 段上亚段高于下亚段,分别占比为11.9%和9.8%,根据三端元图可以看出盒8 段上亚段以石英砂岩、岩屑石英砂岩为主,下亚段以石英砂岩为主(图2)。
研究区盒8 段上、下亚段填隙物体积分数差别较小,分别为13.7%和13.0%(表1),成分主要以硅质、高岭石、伊利石以及铁方解石为主,包含部分绿泥石、铁白云石、硬石膏。其中硅质以孔隙充填、环边加大(图1c)及隐晶质孔隙充填状为主,成分稳定,对储层物性的影响具有双重作用,一方面在压实致密的砂岩中充填孔隙起堵塞粒间孔的作用,另一方面充填的硅质增加了岩石骨架颗粒强度反作用于压实作用[15];搭桥状的伊利石使原本致密的孔喉变得更加复杂。绿泥石含量相对较少,呈薄膜状胶结,通常抑制石英的次生加大,使得部分原生孔隙得以保存(图1d)。
图1 苏里格西部盒8段岩石薄片及扫描电镜照片Fig.1 Photographs of thin section and SEM of He8 reservoir in western Sulige
图2 苏里格西部盒8段砂岩类型三角图Fig.2 Triangulation graph of sandstone types of He8 reservoir in western Sulige
表1 苏里格西部盒8段填隙物体积分数统计Table1 Statistical table of interstitial matter content of He8 reservoir in western Sulige %
23口井92块铸体薄片分析结果显示,研究区盒8 段储集空间主要包括原生粒间孔、次生溶孔和晶间孔,偶见微裂缝(表2),以次生溶孔为主,原生孔隙次之。所取样品埋深平均为3 623 m,较大的埋深导致上覆压力较高,使得目的层经历了较强的压实作用。镜下观察可见碎屑颗粒呈点、线接触,塑性颗粒经强烈压实变形充填原生孔隙(图1e),颗粒间接触关系由线接触向凹凸接触甚至缝合接触转变(图1f),盒8 段下亚段较高的石英含量使其抗压实能力较强从而保留了较多的原生粒间孔(图1g)。长石含量较低,因而溶蚀孔隙主要以岩屑溶孔为主(图1h)。自生黏土矿物主要是高岭石,晶间孔主要为高岭石晶间微孔。盒8段上亚段岩石中偶见微裂缝,对孔隙起到进一步沟通的作用(图1i)。
表2 苏里格西部盒8段储集空间组成统计Table2 Statistical table of reservoir space composition of He8 reservoir in western Sulige %
孔隙、喉道不以某种特定的类型存在于储层中,而是以优势类型相互配置形成不同的组合。孔隙大小决定了储层储存流体空间的多少,孔隙类型组合则控制了储层中流体渗流能力的高低[16]。以溶孔、粒间孔为主要孔隙类型的储层物性较好,孔喉较为粗大且连通性较好,该类型的配置不仅有利于气水渗流,而且较宽的渗流通道能降低气水间流动的干扰。研究区常见的孔隙组合类型有溶孔-粒间孔、晶间孔-溶孔、溶孔-晶间孔、晶间孔。
高压压汞、铸体薄片皆是衡量微观孔喉大小及其连通性的重要技术手段。随着注入汞的压力不断增大,汞可进入更为细小的孔隙之中[17]。通过对同一岩样分别制样进行压汞和铸体薄片测试发现,铸体薄片划分孔隙组合类型与压汞曲线形态有一定的对应关系。根据压汞品质参数与曲线形态,结合孔隙组合类型,将研究区盒8 段储层的孔隙类型划分为Ⅰ—Ⅳ类(图3,图4,表3)。
Ⅰ类——高进汞饱和度、左高右低过渡型孔喉半径分布、分选好、溶孔-粒间孔类。孔隙主要由残余粒间孔组成,少量溶孔,晶间孔所占比例小(图5a),孔隙度为12.6%(大于10%),渗透率为1.48 mD(大于1 mD)。压汞曲线相对偏于左下方并且具有宽缓的平台段,排驱压力为0.28 MPa(小于1 MPa),最大进汞饱和度为93.43%(大于90%);孔喉半径分布不具明显双峰形态(图5a),实际表现为左高右低的主次过渡型双峰形态,主值区间为0.006 2~2.642 5 μm,峰值为0.408 2~1.019 9 μm;该类孔隙类型储层的孔喉较粗,分选好或中等—好,储渗能力较强。
图3 苏里格西部盒8段储层压汞曲线形态Fig.3 Mercury injection curve of He8 reservoir in western Sulige
图4 苏里格西部盒8段储层孔喉分布曲线形态Fig.4 Shape of pore throat distribution curve of He8 reservoir in western Sulige
表3 苏里格西部盒8段不同孔隙类型储层参数Table3 Parameters of pore structure of He8 reservoir in western Sulige
Ⅱ类——高-较高进汞饱和度、正态单峰型孔喉半径分布、分选中等—好、晶间孔-溶孔类。孔隙主要由岩屑溶孔组成,溶孔占60%(图5b),孔隙度为8.2%,渗透率为0.81 mD。曲线位置同样略偏于左下方,平台长度与Ⅰ类相比较短,最大进汞饱和度为89.38%(介于85%~90%);孔喉半径分布呈现为接近于正态分布的单峰形态(图5b),主值区间为0.009 9~0.629 9 μm,峰值为0.099 5~0.253 μm。该类孔隙类型储层物性较好,具有较好的储渗能力。
Ⅲ类——中进汞饱和度、右高左低过渡型孔喉半径分布、分选中等、溶孔-晶间孔类。孔隙中晶间孔占60%~80%,有一定数量的粒间溶孔(图5c),砂岩即使有较高孔隙度,但由于溶蚀程度较弱且有蚀变高岭石充填,渗流能力受到限制;曲线位于压汞图的正中央区域,平台较短,最大进汞饱和度为81.75%(介于80%~85%);孔喉半径分布呈现出右高左低的高低不等的双峰(图5c),主值区间为0.006 2~0.630 1 μm,峰值为0.025 2~0.040 5 μm;孔喉细小,连通性较差,气水受到的渗流阻力较高,储渗能力较弱。
图5 苏里格西部盒8段不同孔隙类型储层铸体薄片、孔喉分布曲线Fig.5 Pictures of thin section and pore throat distribution curves of He8 reservoirs with different pore types in western Sulige
Ⅳ类——低进汞饱和度、双峰型孔喉半径分布、分选差、晶间孔类。该类样品孔隙以晶间孔为主,常呈孤立状存在(图5d),孤立的晶间孔孔隙细小、连通性差,缺少其他孔隙类型组合时渗流能力较弱;压汞曲线形态较窄,缺少明显的宽缓平台段,最大进汞饱和度为65.78%(普遍小于80%);孔喉半径分布呈现明显的双峰形态(图5d),孔喉半径低值为0.006 2~0.016 1 μm,孔喉半径高值为0.163 5~0.631 5 μm;该类孔隙类型储层颗粒之间紧密接触,含有较多的变形强烈的软组分,孔喉致密,储渗能力较差,一般不构成有效储层。
在孔喉结构表征的基础上,选取代表4 类孔隙类型的样品进行分析测试。结果显示,Ⅰ类孔隙类型储层的相渗曲线两相共渗区范围较大,束缚水时气相相对渗透率最高(表4),等渗点也处于较高的位置,表明Ⅰ类储层储渗能力较强,气水扰动较弱。由Ⅰ类—Ⅳ类,相渗曲线的两相共渗区变得狭窄,束缚水饱和度逐渐增大,等渗点降低,曲线整体向右下方偏移(图6)。孔隙结构变差造成储层储集天然气的能力变差,在同等生烃条件下不利于天然气充注构成有效储层[18];另外渗流通道变窄增强了气水渗流的干扰,气藏开采后期含水率上升使得气体流动能力变弱,不利于气田采收率的提高。
表4 苏里格西部盒8段不同孔隙类型储层相渗曲线特征参数Table4 Characteristic parameters of relative permeability curve of He8 reservoir with different pore types in western Sulige
图6 苏里格西部盒8段不同孔隙类型储层气水相渗曲线Fig.6 Gas-water relative permeability curves of He8 reservoirs with different pore types in western Sulige
采取西北大学国家专利技术——真实砂岩模型结合相渗分析进行模拟实验研究,与过往激光雕刻的模型相比,该模型经原始岩心制片后粘连在两片玻璃之间,保留了储层的原始物理性质,使模拟实验尽可能接近真实地层情况。其采用显微装置与图像采集装置,解决了相渗、核磁等手段只能定量表征流体的渗流特征,未能直观观测多相流体渗流规律的缺陷[19-21]。
4.2.1 气驱水渗流特征
油气未进入储层前,地层为饱和原始地层水的状态,因此对模型先进行抽真空饱和水,之后进行气驱水,模拟天然气充注储层并观察气水运动的渗流特征[21-23]。镜下观察发现,气驱水过程存在3 种渗流特征:①指状驱替,该类型的渗流发生在气体进入储层的初始阶段,气体总是选择渗流阻力较小的优势通道进行驱替,呈现多条线性交织的渗流路线(图7a)。②网状驱替,随着气体不断增多,压力增大,气体进入更为细小的孔喉,指状渗流不断形成分支,形成局部连片的网状渗流路线(图7b)。③均匀驱替,该类型的驱替最为彻底,渗流通道不断加宽、连片,气体均匀向前推进,仅在局部地区绕流,最终气体充满大多数孔隙(图7c)。
不同孔隙类型储层具有不同的渗流规律,Ⅰ类以驱替较完全的均匀驱替为主,Ⅱ类表现为网状、网状-均匀驱替,Ⅲ类表现为指状驱替,Ⅳ类较为致密未能完成驱替实验。
Ⅰ类孔隙类型储层孔隙度较高,液测渗透率为0.254 mD,驱替方式以均匀驱替为主。气体沿孔道中央不断将原始地层水驱走,由于岩石成分中石英占比较高,储层表现为亲水性,因而水体未能被完全驱出,在孔道壁上附着一层薄水膜而形成膜状残余水。一般情况下,气流产生的拖拽力不足以推动水膜水流动,因而水膜水对气体的渗流影响较小。
图7 苏里格西部盒8段不同孔隙类型储层真实砂岩模型气驱水照片Fig.7 Photographs of gas flooding in real sandstone model of He8 reservoir with different pore types in western Sulige
Ⅱ类孔隙类型储层较Ⅰ类物性较差,驱替类型以网状、网状-均匀驱替为主。气体先以指状驱替进行气驱水,随后主渗流通道不断加宽形成多条分支过渡为网状或网状-均匀驱替。Ⅱ类孔隙存在部分盲端孔隙及缩颈状喉道,气体克服贾敏效应后以卡断的气泡存在于盲端孔隙中。该类样品驱替结束后,水体除膜状残余水外还存在较多的角隅残余水。
Ⅲ类孔隙类型储层非均质性较强,气体沿局部高渗带指状驱替,随着压力增大,渗流通道未见明显的加宽,气、水流动达到稳定状态后,在模型局部地区形成了片状的绕流残余水。绕流残余水的水量较多,结合相渗分析,含水饱和度越高,气相渗透率下降越多,因而气体的渗流能力最弱。
Ⅳ类孔隙类型储层经强烈压实、胶结作用,颗粒之间呈紧密线接触,物性较差。实验初期无法对其进行抽真空饱和水。即使经长时间抽真空饱和水,由于模型承受的压力有限,加之存在较多的水敏矿物无法进行实验。
气驱水过程中气体能否进入细小的孔喉取决于气体的充注压力与毛管阻力[24]。当充注压力大于毛管阻力,气体以串珠状的气泡不断进入细小的孔喉,随着气泡不断增多将细小孔隙中的水体驱出形成次一级的渗流通道。当气体的充注压力不足以推进气体继续运移,会在狭窄喉道处卡断气体,卡断的气体以水包气的形式赋存,阻碍了气体的流动,不仅不利于气体的产出,同样使水相渗流受阻,使得致密储层气水相渗曲线的等渗点普遍较低。
气驱水达稳定状态后,流体形成固定的渗流通道,达到了通常意义的束缚水状态,束缚水饱和度、束缚水饱和度下的气相相对渗透率均受孔隙结构控制[25]。束缚水饱和度与气测渗透率成负相关(图8),束缚水饱和度下的气相相对渗透率则与之相反(图9)。即孔隙类型越好,束缚水饱和度越低,在同等生烃条件下有利于天然气充注构成有效储层。
图8 苏里格西部盒8段束缚水饱和度与气测渗透率相关关系Fig.8 Relationship between irreducible water saturation and gas permeability of He8 reservoir in western Sulige
图9 苏里格西部盒8段束缚水饱和度下气相相对渗透率与气测渗透率相关关系Fig.9 Relative relationship between gas relative permeability and gas permeability at irreducible water saturation of He8 reservoir in western Sulige
4.2.2 泄压开采渗流特征
以往的研究中,中外学者均采取水驱气的方式模拟气藏开采,一定程度上能研究气水间的干扰程度,但与矿场实践过程中采取衰竭式的开采方式不符,不能模拟开采时的产水情况以及水体对气体渗流的影响。
由于气体无色难以观察其流动的多少,因此根据压力下降程度反映模型气体的采出程度。气驱水结束后,关闭模型进出口的阀门,使气体进入样品的有效孔隙,模拟地层的原始压力;打开模型出口处的阀门使模型中的压力释放,从而模拟开采时的地层能量亏损,期间观察压力下降程度以及气水渗流规律。
模拟泄压前,镜下观察水体以3种形式赋存,即主渗流通道壁上的膜状残余水、盲端的角隅残余水以及绕流形成的簇状残余水,气体则存在于主渗流通道以及被细小孔喉处的残余水封闭的水包气中。模拟开采过程中,初始压力下降幅度及速率较低,气体流速较小,产生的拖拽力较小,对残余水的影响较小。泄压速率(采气速度)较小时,产生的推挤力有限,因而膜状残余水表面波动,但整体未发生流动,盲端封闭的气体膨胀,但膨胀力有限未能突破喉道流动。随着泄压时间增长,地层压力不断下降,被水封存的气体膨胀产生的推挤力大于颗粒和水体的阻力,一部分被束缚的水体转变为可动水进而流动。与此同时,气体流速增大,产生大的拖拽力使得主渗流通道上的膜状残余水转变为可动水。
Ⅰ类孔隙类型代表样品泄压时间为400 s,压力由180 kPa 下降至20 kPa,含水饱和度由42%降低至13%时泄压结束;Ⅱ类孔隙类型代表样品经1 300 s,压力由180 kPa 下降至30 kPa,含水饱和度由42%降低至22%时泄压结束;Ⅲ类孔隙类型代表样品经2 600 s,压力由180 kPa 下降至50 kPa,含水饱和度由42%降至31%时泄压结束。相渗曲线分析可知,残余气状态下3 类孔隙类型储层的气相渗透率下降较多,渗流能力减弱,由Ⅰ类过渡至Ⅲ类,残余水体逐渐增多,随之封闭的残余气也较多,泄压结束后压力保持较高。通过3类代表性样品的泄压实验可以看出,孔隙类型越好的储层泄压的时间越短,压力下降的程度越高(图10)。现场表现为储层类型越好采出程度越高,储层类型越差则被水包束的残余气越多,而这一部分气体往往很难被开采,因而生产后期气井表现为产水严重甚至纯产水[24]。
对于常规储层,孔喉较粗,连通性较好,气驱水较为彻底,束缚水饱和度较低,产出的可动水水量较少,对生产影响有限。而对于致密储层,存在较多盲端孔隙与缩颈状喉道,因而束缚水饱和度较高,随着生产压差增大,束缚水转化的可动水量较高[26]。钟韬等通过对致密砂岩气藏高含水特征及产水机理研究认为,合理控制生产压差可以降低气井的产水风险,从而使气井实现长期稳产[27]。
图10 苏里格西部盒8段不同孔隙类型储层模型泄压压力-时间关系Fig.10 Pressure-time relationship of reservoir models of He8 reservoir with different pore types in western Sulige
确定束缚水转化为可动水的生产压差,从而降低可动水的产出,对于提高气藏采收率具有重要意义。压汞测试反映的是压力与可动流体饱和度之间的关系[21]。对于压汞实验来讲,汞为非润湿相,气体为润湿相,气水相渗中,气体为非润湿相,水为润湿相,因此可将相渗与压汞相结合,将压汞曲线与相渗曲线平均化处理,以压汞测试中的排驱压力代表实际生产中的生产压差,对压汞曲线坐标进行转换,将横坐标转化为润湿相饱和度,将平均的束缚水饱和度投影至压汞曲线即可得储层束缚水转变为可动水的节点生产压差。综合以上研究,确定研究区储层束缚水转变为可动水的节点生产压差为7 MPa(图11)。矿场实践表明,生产压差大于7 MPa时,产水量明显增加,因此生产过程中应适当减小生产压差以降低可动水产出的风险,减少气井出水所产生的储层伤害,从而提高气田的采收率。
图11 苏里格西部盒8段不同孔隙类型储层平均相渗曲线与平均压汞曲线投影Fig.11 Corresponding pictures of average relative permeability curve and average mercury injection curve in various pores of He8 reservoir in western Sulige
苏里格西部盒8 段储层岩石类型以石英砂岩、岩屑石英砂岩为主;孔隙类型组合主要有溶孔-粒间孔、晶间孔-溶孔、溶孔-晶间孔、晶间孔4种类型;孔隙类型对应的孔喉分布分别呈现左高右低过渡型、正态单峰型、右高左低过渡型以及双峰型。由Ⅰ类过渡至Ⅳ类,孔隙类型越来越差,相渗曲线的两相共渗区变得狭窄,束缚水饱和度逐渐增大,等渗点降低,曲线整体向右下方偏移,气水干扰逐渐增强。由Ⅲ类至Ⅰ类,可视化气驱水驱替类型逐渐由指状驱替过渡为均匀驱替,孔隙类型越好驱替启动压力越小,最终驱替更为彻底,表明在同等生烃条件下孔隙类型越好越有利于天然气充注构成有效储层。泄压实验显示,由Ⅲ类至Ⅰ类孔隙类型储层泄压的时间缩短,压力下降的程度增高,表明储层类型越好采出程度越高。根据压汞结合相渗确定研究区储层束缚水转变为可动水的节点生产压差为7 MPa,生产过程中应适当减小生产压差以降低可动水产出的风险,减少气井出水所产生的储层伤害从而提高气田的采收率。