火山岩风化壳发育规律及油气地质意义
——以准西车排子地区石炭系火山岩为例

2019-12-04 08:03林会喜宫亚军赵乐强闵飞琼曾治平管永国牛靖靖
油气地质与采收率 2019年6期
关键词:风化壳石炭系结构层

林会喜,宫亚军,赵乐强,闵飞琼,曾治平,管永国,牛靖靖

(中国石化胜利油田分公司勘探开发研究院,山东东营 257015)

火山岩风化壳型油气藏是全球范围内一类重要的油气藏类型[1-6]。准噶尔盆地已发现克拉美丽、五彩湾、克拉玛依及车排子等30个石炭系火山岩风化壳油气田[7]。早期研究认为盆地石炭系储层的发育受岩性和岩相控制,故主要针对溢流相安山岩和爆发相火山角砾岩进行勘探;但近年来,研究人员逐步认识到风化作用及其形成的风化壳对石炭系火山岩油气成藏具有重要意义,与岩相和岩性相比,风化壳更易形成有利储层且易高产稳产[7-11]。针对准噶尔盆地车排子地区石炭系储层[12-17]及其含油气特征的研究成果[18-19]显示,研究区发育典型的风化壳油气藏,但目前有关风化壳发育规律的研究较少,尤其是石炭系油气成藏规律尚不清楚。为此,笔者对车排子地区火山岩风化壳发育特征进行研究,剖析风化壳控制下的石炭系油气成藏规律,以期指导研究区石炭系进一步的油气勘探。

1 地质概况

图1 车排子地区区域构造位置Fig.1 Regional structural location of Chepaizi area

车排子地区位于准噶尔盆地西缘,其西北邻近扎伊尔山,南面为四棵树凹陷,向东以红车断层与沙湾凹陷相接(图1)。石炭系包括下统太勒古拉组、上统包谷图组和希贝库拉斯组,属于火山或火山-沉积建造,整体表现为裂隙-中心式火山喷发特征,受红车等断层控制,岩性、岩相多呈NS向条带状分布[20]。其中,溢流相多分布于断层交汇处,岩性为玄武岩、安山岩、流纹岩及凝灰岩等,红车断层向西以发育爆发相凝灰岩和火山沉积相为主。在石炭纪末期,红车等断层发生大幅度挤压逆冲[21],其上盘石炭系大范围抬升剥蚀,形成车排子地区石炭系顶部的大型风化壳储集体。至侏罗纪早期,石炭系顶开始接受沉积,侏罗系、白垩系、古近系及新近系等碎屑岩地层依次超覆于石炭系之上,与石炭系之间形成多级别的区域性不整合。

2 火山岩风化壳发育规律

2.1 结构特征

火山岩风化壳是指抬升背景下火山岩在表生环境中,经物理与化学风化淋滤作用,形成的具有层状结构的地质体[7,9,18]。通过岩矿学、地球化学、测井及物性特征等综合分析,将车排子地区石炭系风化壳由上至下划分为黏土层、水解层和淋滤层3个结构层(图2)。

2.1.1 黏土层

黏土层是指位于风化壳顶部的细粒残积层[18,22]。其黏土化程度达80%~100%,以高岭石、伊利石等黏土矿物为主;Fe,Ti 和Al 富集;Mg,Ca,Na 及K 流失严重;反映风化程度的化学蚀变指数在85 以上[18],表明风化程度极高;孔隙度和渗透率极低,孔隙度在2.2%以下,渗透率小于0.1 mD(图2)。

2.1.2 水解层

水解层是指处于黏土层与淋滤层之间的过渡层,具有以下特征(图2):①矿物发生氧化蚀变,如长石转化为高岭石,斜长石局部绢云母化,暗色矿物绿泥石化、帘泥石化[18]。②岩石呈角砾状,发育网状风化裂缝,平均裂缝密度为1.8条/cm,且缝内充填泥质、铁质、沸石及方解石等,充填程度为42%~90%。③与黏土层相比,水解层的Fe,Ti 和Al 富集程度低;Mg,Ca,Na 和K 流失较少;化学蚀变指数为55~90[18]。④由于较高的黏土化程度和充填程度,水解层的物性条件较差,孔隙度最大约为6%,渗透率普遍小于0.4 mD。

2.1.3 淋滤层

图2 车排子地区排60井石炭系风化壳结构特征剖面[15]Fig.2 Characteristics of weathering crust structure of Well Pai60 in Chepaizi area[15]

淋滤层是处于水解层与原岩之间的结构层,基本保持原岩特征(图2)。其矿物蚀变现象与水解层类似,但黏土化程度较弱,而风化裂缝较发育,平均裂缝密度为1.3条/cm,且缝内充填方解石、沸石及泥质,充填程度为10%~50%。元素组成与原岩趋于一致。淋滤层的显著特征是黏土化程度弱、风化裂缝较发育、充填程度有限,因此其物性条件有较大改善,孔隙度为10%~18.5%,渗透率为0.1~500 mD,是研究区主要的油气储集层段。

2.2 测井识别

常规测井曲线对风化壳具有一定的响应特征(图2),但存在多解性,且各结构层界限不明晰[23]。为此,笔者构建了风化壳结构测井识别的双因子模型:反映风化壳黏土化程度的黏土化因子(F1)和反映风化裂缝及孔隙变化特征的孔缝因子(F2)。其模型因子的表达式分别为:

模型中,黏土化因子由3部分构成:①反映蚀变程度的变量(CNL-DEN)。岩石的蚀变程度越高,中子孔隙度相对于总孔隙度(密度孔隙度)的差值越大。②反映黏土化程度的变量(CNL×GR)。火山岩岩性由基性—中性—酸性变化,其自然伽马越来越高,而中子孔隙度越来越低,二者的乘积可以消除岩性影响,进而反映黏土化程度的变化。③前述2个变量之和除以井径参数,可以消除扩径影响。此外,声波和密度分别为反映裂缝和孔隙变化的良好参数,因此孔缝因子采用声波与密度之和的平均值,再除以井径参数,进而消除扩径的影响。通过研究区43 口取心井风化壳结构层与双因子模型的对比分析发现,风化壳各结构层具有如下划分标准:黏土层的F1和F2均大于等于0.6,水解层的F1和F2均大于等于0.3 且小于0.6,淋滤层的F1和F2均大于等于0.15 且小于0.3,原岩的F1和F2均小于0.15(图2)。因此,利用风化壳结构测井识别双因子模型,可实现无取心井的风化壳结构划分。

2.3 发育主控因素

2.3.1 原岩岩性

原岩岩性对风化壳结构发育的控制作用主要表现在3 个方面:①由于火山岩的脆性矿物含量较高,故其原岩本身的造缝能力强,收缩缝、构造缝等较发育[10-12],沿早期裂缝的风化淋滤更易形成风化裂缝(图2),多成因类型裂缝的相互叠加强化,使得火山岩风化壳厚度远大于碎屑岩的风化壳厚度。②火山岩的化学不稳定矿物含量高,且基性矿物的比例越高,原岩的抗风化能力越弱,岩石越易于风化,风化壳厚度也越大,偏基性的安山岩的风化壳厚度要大于英安岩的风化壳厚度[6,18]。③原岩粒度等结构构造对风化淋滤具有负反馈作用,例如泥岩和凝灰岩等本身由颗粒细小的偏泥质物质构成,因此最易形成风化黏土层,但细粒物质也极易堵塞微裂缝和微孔隙,进而阻碍风化作用的进行[18];因此,泥岩和凝灰岩易于形成黏土层,但厚度较薄。

2.3.2 风化时间

风化时间越长,风化程度越高,风化壳厚度往往也越大。研究区发育侏罗系与石炭系、白垩系与石炭系以及新近系与石炭系共3 个级别的风化壳,岩性主要为凝灰岩,随着沉积间断时间的增加,不同级别界面的风化壳厚度增大,如排浅4 井侏罗系与石炭系之间的风化壳厚度为38 m,排614 井白垩系与石炭系之间的风化壳厚度为46 m,苏1 井新近系与石炭系之间的风化壳厚度为73 m。据邹才能等研究发现,风化壳厚度与风化淋滤时间呈对数关系[7];随风化淋滤时间的增加,风化壳厚度增大,当风化淋滤时间达到36.3 Ma(平衡时间)时,风化壳厚度约为450 m(平衡厚度),此后,风化壳厚度不再显著增加。另据毛翔等研究发现,准噶尔盆地西缘隆起区的风化淋滤时间长达50 Ma[24],大于36.3 Ma,表明研究区石炭系火山岩已充分风化。

2.3.3 古地形

宋明水等研究发现,古地形是控制研究区石炭系风化壳发育的主控因素之一。当古坡度小于4.5°,风化壳厚度随古坡度增加而增大;当古坡度大于4.5°,风化壳厚度变化不明显,黏土层集中发育于古坡度为2°~3.5°范围内[18]。邹才能等对准噶尔盆地石炭系风化壳的研究结果表明,古地形对黏土层分布的影响较大;当古坡度高达42°时,依然有黏土层发育;小于42°时,黏土层则连片分布[7]。上述关于古坡度对风化壳发育控制作用的认识存在差异,可能是由于研究区范围局限造成的,但总体上,低部位和缓坡带利于风化壳结构的保存,因此其风化壳普遍发育3个结构层,且厚度较大;而凸起区和陡坡带由于保存条件较差,黏土层或黏土层与水解层均缺失,仅发育2个或单个结构层,且厚度较小。

2.3.4 断裂

车排子地区石炭系断裂十分发育,其对风化壳形成及其储集性的改善具有重要的控制作用[7,25]。靠近断裂带微裂缝发育,垂直断面1.5 km 范围内是微裂缝集中发育区[8],断裂-微裂缝组成的断-缝网络改善了岩石的渗流能力,地表水沿断-缝网络向下风化淋滤,距断面1.5 km 范围风化壳厚度显著增大,且其厚度随与主断裂距离的增加而减小,剖面上具有漏斗状的下拉风化特征。如前所述,受火山岩脆性程度及不稳定矿物含量等影响,沿断-缝网络的风化淋滤作用,导致不同岩性的淋滤层(储层)厚度和储集空间类型具有明显差异(图3)。例如位于主断裂附近、微裂缝发育的排66 井火山角砾岩,其风化壳厚度达237 m,储集空间主要为角砾边缘的次生溶蚀缝(图3a);含较多不稳定矿物的排666井玄武安山岩和排667 井玄武岩的风化壳厚度为94~115 m,储集空间多为溶蚀孔缝型,且溶蚀孔多沿微裂缝分布(图3b,3c);苏13 井凝灰岩风化壳厚度仅为69 m,储集空间以裂缝型为主(图3d)。虽然断裂对风化壳的控制作用仅在有限的范围,但对风化壳的储集性具有显著改善。统计结果显示,风化壳内的“断缝体”是研究区石炭系油井高产的主要原因之一[12]。

2.4 发育模式

受原岩岩性、风化时间、古地形和断裂等因素控制,车排子地区主要形成3 种类型的风化壳(图4):Ⅰ型风化壳发育黏土层、水解层和淋滤层3个结构层,由于黏土层受局部低洼控制而有效保存,因此该类型主要位于古地形的缓坡低洼带,且局部分布,研究区凸起东、西两翼的缓坡低洼区均发育该类型风化壳[18,24];Ⅱ型风化壳发育水解层和淋滤层2 个结构层,沿Ⅰ型风化壳向外,表生保存条件变差,松散的黏土层缺失,而水解层保存,因此该类型多沿Ⅰ型风化壳周缘呈环带状展布;Ⅲ型风化壳仅发育淋滤层1 个结构层,凸起高部位风化作用最为强烈,黏土层和水解层难以保存,仅发育淋滤层,且其分布范围也最大。

综上所述,北疆在石炭系沉积后的间断期处于干旱-半干旱的亚热带气候[4]。在漫长的地质历史时期内,岩性影响较小[7],故风化壳厚度主要取决于风化时间。古地形高部位为强风化区,表生保存条件差,黏土层或黏土层与水解层均缺失,多发育2个或单个结构层的风化壳,因此,古地形控制风化壳结构层的完整性。风化壳短期的(平衡时间内)、局部的变化受断裂和岩性控制,如沿断裂呈漏斗状的局部下拉风化特征(图4)。

3 火山岩风化壳对油气成藏的控制作用

基于前人对准噶尔盆地石炭系24 个风化壳油藏研究成果[7-8],结合车排子地区11 个风化壳油藏剖析结果,认为风化壳对油气成藏的控制作用主要表现在储集作用、封盖作用及输导作用3个方面。

图3 车排子地区石炭系风化壳主要储集类型Fig.3 Main storage types of Carboniferous weathering crust in Chepaizi area

图4 车排子地区火山岩风化壳发育模式Fig.4 Development model of Carboniferous weathering crust in Chepaizi area

3.1 淋滤层为有利储层

准噶尔盆地石炭系以中基性火山岩为主,原始物性较差,其不同岩性需经历长期风化才可以形成有利储层[7,24-25]。侯连华等对准噶尔盆地2 671个样品统计分析发现,有效储层发育在距石炭系顶界以下0~550 m,其最大孔隙度达32%[25]。研究结果表明,研究区不同岩性作为有效储层的前提条件是须处于淋滤层内,且有效储集体随淋滤层发育深度范围的变化而变化,即有效储层受风化壳结构层控制。距石炭系顶部40 m,黏土层和水解层较为发育,其物性条件差,最大孔隙度为5.88%,最大渗透率为0.36 mD。距石炭系顶部40~380 m 淋滤层的孔隙度为7%~18%,渗透率为0.1~500 mD,是研究区储层发育段(图1),岩性为火山角砾岩、安山岩、玄武岩、英安岩及凝灰岩等,处于淋滤层内的各类火山岩均可以成为有利的储集体。而距石炭系顶部380 m 以下,淋滤层不发育,火山岩孔隙度显著减小,仅在断裂作用影响下孔隙度有所增加。

3.2 黏土层与水解层为有效盖层

石炭系上覆的中-新生界泥岩被认为是风化壳型地层油藏的封盖层[9],但不同风化壳结构层的微观封堵能力分析结果表明,黏土层与水解层可以成为有效的直接盖层。黏土层与水解层的实测突破压力为0.5~6.8 MPa,依据毛细管力公式计算,其可以封盖的油柱高度可达上百米,而已发现的油藏高度多为10~130 m,即黏土层与水解层的临界封堵高度远大于油藏的油柱高度。宏观上,较大范围分布的黏土层与水解层构成有效的区域盖层,两者与淋滤层的组合使得研究区石炭系风化壳具备储盖一体的组合特征,可形成大规模风化壳型地层圈闭群(图4)。

3.3 淋滤层与上覆砂体为重要输导层

准噶尔盆地石炭系顶部不整合面常被认为起到侧向输导作用[7,9,25],但研究区风化壳结构解剖与油气运移地球化学示踪研究表明[19],石炭系油气的聚集成藏是通过风化壳内的淋滤层及其上覆毯状砂体(毯砂)来输导运移的,两者与油源断层匹配,形成断层-毯砂、断层-淋滤层、断层-毯砂-淋滤层3种类型输导方式,进而控制风化壳内的油气运聚成藏。

断层-毯砂输导方式 在石炭系上覆地层中,发育侏罗系八道湾组和新近系沙湾组2 套毯砂,其物性较好,横向连通,且与红车油源断层相接,构成断层-毯砂输导体系。在凸起上,2 套毯砂与淋滤层错断对接,油气在对接处富集成藏。例如排685 井油藏,八道湾组毯砂与红车油源断层构成的断层-毯砂是其油气成藏的高效输导方式[18-19,27](图5)。在断层-毯砂输导方式控制下,毯砂与淋滤层错断对接区均为有利的油气成藏区。

断层-淋滤层输导方式 广泛分布的淋滤层厚度达数十米,且物性好,并与红车油源断层相接,构成断层-淋滤层输导体系。油气运移地球化学示踪研究证实,车21、排66油藏均为通过断层-淋滤层输导方式运聚成藏(图5)[19]。发育较完整的Ⅰ和Ⅱ型风化壳分布区主要为该输导方式,这是由于水解层和黏土层的存在一方面阻止油气的垂向散失,另一方面确保淋滤层内的油气发生一定的横向运移,但鉴于火山岩岩性多变,其输导距离较毯砂的小,即在该输导方式下,靠近油源断裂带较为有利。

断层-毯砂-淋滤层输导方式 该输导方式与断层-毯砂输导方式不同,其主要发育在黏土层和水解层缺失的Ⅲ型风化壳发育区,且多为超覆对接,形成类似“天窗”式垂向对接输导。例如排70井油藏(图5),因此处于毯砂超覆尖灭带的淋滤层是十分有利的勘探目标区。

3.4 油气成藏模式

综合分析前人针对油气藏特征和油气来源的研究成果[19,26-27],建立车排子地区石炭系火山岩油气成藏模式。车排子凸起东翼的油气来自于沙湾凹陷中二叠统烃源岩,而西翼的油气来自于四棵树凹陷侏罗系烃源岩[19,27],处于凹凸转换带的红车断层和艾卡断层被证实分别为东翼和西翼的油源断层[27]。从油源断层到凸起区,横向达50 km 的旁源侧圈配置(图1)决定了输导方式为研究区石炭系油气成藏的控制因素,油气经油源断层进入风化壳淋滤层,并横向运移成藏,或进入石炭系上覆的2套毯砂进行横向运移,并于毯砂与淋滤层的错断对接及超覆对接处聚集成藏(图5)。研究区石炭系风化壳油气成藏模式可概括为:双源侧向供烃,断层-毯砂-淋滤层复合输导,风化壳型圈闭聚集。

4 结论

图5 车排子地区石炭系风化壳油气成藏模式Fig.5 Hydrocarbon accumulation model of Carboniferous weathering crust in Chepaizi area

准西车排子地区石炭系火山岩风化壳发育黏土层、水解层和淋滤层3个结构层。原岩岩性、风化时间、古地形及断裂控制风化壳发育及展布,其中风化时间决定风化壳厚度,古地形控制风化壳结构的完整性,原岩岩性和断裂仅在一定地质历史时期内产生影响。在平面上,以局部缓坡低洼区发育的具有3 个结构层的Ⅰ型风化壳为中心,向外依次为具有2个结构层的Ⅱ型风化壳和单个结构层的Ⅲ型风化壳,且风化壳厚度逐渐减小,淋滤层普遍发育。

受风化淋滤作用及其形成的结构层控制,车排子地区石炭系火山岩淋滤层内各类岩性均可成为有利储层,黏土层和水解层是风化壳型地层圈闭的有效盖层,淋滤层与上覆砂体是风化壳内油藏的重要横向输导层。研究区石炭系火山岩风化壳油气成藏具有断层-毯砂、断层-淋滤层以及断层-毯砂-淋滤层3 种输导方式,受其控制油气主要分布于毯砂-淋滤层错断对接区、近断裂带及毯砂-淋滤层超覆对接区。研究区石炭系火山岩油气成藏模式为双源侧向供烃、断层-毯砂-淋滤层复合输导及风化壳型圈闭聚集。

符号解释

F1——黏土化因子,无量纲;CNL——中子测井曲线归一化数值,无量纲;DEN——密度测井曲线归一化数值,无量纲;GR——自然伽马测井曲线归一化数值,无量纲;CAL——井径测井曲线归一化数值,无量纲;F2——孔缝因子,无量纲;AC——声波时差测井曲线归一化数值,无量纲。

猜你喜欢
风化壳石炭系结构层
大同石炭系煤高灰半焦浮选脱灰研究
道路结构层整体抬高加固方案在S20大修工程中的应用和研究
透水铺装应用于海绵城市建设中的若干问题探究
缅甸莱比塘铜矿堆浸场地层的渗透性特征分析
浅析油气成藏过程中不整合的作用
利用成像测井资料解剖石炭系内幕构造
同煤集团石炭系原煤浮选可行性探讨
城市道路柔性路面结构的应用
防排水结构层对铁路基床动力响应的影响研究
云南勐满红土风化壳特征及其意义