基于偏微分方程的遥感成像雷达距离图像分类方法

2019-11-28 11:41
吉林大学学报(理学版) 2019年6期
关键词:极化雷达精度

闫 颖

(长安大学 地球科学与资源学院,西安 710054)

遥感成像雷达距离图像可实现数据的实时、全方位采集,广泛应用于军事、探测等领域.图像分类是将极化合成孔径雷达(SAR)图像分类成不同属性的区域,同时采集到感兴趣目标.通过图像分类实现目标描述、特征采集及参数检测,将原始遥感成像雷达距离图像变换成更紧凑的形式,为后续图像分析提供可靠依据[1-2].其中,传统基于极化SAR数据分类的方法,未对图像进行平滑处理,对多区域图像进行分类时,易受环境干扰,导致分类性能较差[3].针对该问题,研究人员提出了采用偏微分方程完成图像分类的方法,该方法对图像进行平滑处理,对遥感成像雷达距离图像内的梯度、曲率等几何属性进行直接操作,提高了图像的处理质量.因此,本文提出一种基于偏微分方程的遥感成像雷达距离图像分类方法,以提高图像的分类精度和效率,增强遥感雷达成像的效果.

1 算法设计

1.1 传统基于偏微分方程的图像平滑方法

偏微分多区域分类模型具有以下优点:

1) 模型的曲线演化方程结构清晰易懂、计算方便快捷;

2) 模型进行多区域联合分割时,使用的数值化参数不干扰最终的图像分割结果;

3) 模型可采用水平集函数计算不同区域与边界,曲线演化与区域数量之间不存在关联,若区域数量不是2的指数,则不会出现空白区域,曲线长度限制项权值也可相同.

设初始遥感成像雷达距离图像为u0(x,y),t为时间,则平滑遥感成像雷达距离图像∂u(x,y,t)为

(1)

c1(x)=exp{-(x/t)2},

(2)

c2(x)=1/[1+(x/t)2],

(3)

其中x表示扩散速度.若解式(1),则需先将式(1)离散化,离散后为

(4)

1.2 改进偏微分方程实现图像平滑处理

本文采用鲁棒性估算参数ρ及尺度参数σ降低噪声并增加鲁棒性[6],令样本图像u符合以下最佳规范:

(5)

其中φ(up-us,σ)表示匹配函数,φ=ρ=2s/(2σ2+s2).令式(5)最小,图像中任何像素灰度都与相邻点灰度相近.采用适当的ρ函数,能达到降低图像边际噪声点的效果[7].

通过改进原有不正确的扩散系数c(x),解决遥感成像雷达距离图像边际保留较差的问题[8].设s>σ时,c(x)=0,则改进后的公式为

(6)

从而

(7)

(8)

采用改进的偏微分方程对遥感成像雷达距离图像进行平滑处理.

1.3 多区域分割模型设计

在完成上述平衡处理的遥感成像雷达距离图像基础上,采用基于偏微分方程的多区域分割模型,实现雷达距离图像多区域分类[9].

对泛函数E(u,T)的最小化过程即为完成平滑处理后遥感成像激光雷达距离图像的分割过程:

(9)

将Ω中某个映射设置成图像I,则有I:Ω→R,其中R为全部像素集,梯度算子用描述.检索遥感成像雷达距离图像中不同物体的边界[10],通过轮廓先完成不同物体的分割,实现距离图像的有效分类.图像中不同物体边界用T描述,式(9)中的泛化能量函数E(u,T)中存在3个能力限制项,首个限制项确保结果u向图像趋近,次限制项对非边界范围的平滑程度进行描述,最后一个限制项对边界长度进行描述,调控3个限制项过程中应对参数α和β实施调控.

将新能量函数融入水平集分割过程中,则有

(10)

其中:E(Ωi,Ti,pi,N)表示分割区域;N表示首个限制项用于描述遥感成像距离图像像素分割准确的后验概率;pi表示区域Ωi的概率密度函数;次项与式(9)内最后一个限制项相同,用于描述边界长度Ti;式(10)中最后限制项中融入可限制附加范围的限制项,对λ和d实施调控,可对各限制项的权重进行合理调控.式(9)的存储空间低于式(10),式(10)采用的水平集函数向实际区域边界趋近,精度较高.利用式(10)对图像进行分类时,图像边缘与区域概率分布特性对分割性能具有较高的绝对作用,同时在对图像分类时无需对噪声实施预操作.式(10)也能对多区域图像进行分类.式(10)中的附加范围限制项d,可确保分割去噪在图像区域边界终止分类,避免出现空白以及交叉的图像分类问题,从而极大提高了遥感成像雷达距离图像的分类精度.

利用式(10)实现新能量函数融入水平集分割过程中,应将其中的能量泛函数调整为

(11)

其中,能量泛函数E(φ,p1,p2)中存在一个水平集函数φ.φ>0,说明位于区域Ωi内,否则位于区域Ωi外;φ=0,说明位于区域Ωi边界T.设置Heavside函数H(φ)对两个区域进行判断,如果φ=1,则H(φ)=1;如果φ<0,则H(φ)=0.不同区域内的密度函数分别用p1和p2描述,且与水平集函数φ存在相关关系,迭代完成后,对基于期望最大化准则再次进行运算.迭代完成需再次计算不同区域内均值和标准差的情况存在于高斯分布函数中.基于期望最大化准则和pi与φ的无关联性获取高斯分布的概率密度函数,梯度下降方程可通过高斯分布的概率密度函数获取.

融入时间间隔后,则原始时刻的原始水平集函数φ获取梯度流∂φ方程为

(12)

其中H′(φ)表示H(φ)的导数.采用不同区域定义所属水平集的方法,解决多区域分割问题.区域Ωi的水平集函数用φi描述,其中i=1,2,…,N,唯一满足φi(x)>0时,x∈Ωi.一个水平集函数要对应两个区域的图像分割,区域竞争明显.分割模型中的演化曲线长度受到约束,一个区域扩大导致另一个区域缩小.

上述分析结果表明,可采用添加曲线演化过程中竞争项的方式,确保划分重叠与空白区域图像的准确率.不同区域趋于平衡的情形可发挥竞争项的功能实现.充分分析竞争项中的概率项与长度项两个制约因素,才能实现无重叠与空白区域图像的有效划分,获取的遥感成像雷达距离图像分类偏微分方程为

(13)

2 实验分析

2.1 成像效果分析

下面通过实验验证本文提出的基于偏微分方程的遥感成像雷达距离图像分类效果.实验仿真平台为CPU intel (R) core (TM) i8,3.50 GHz;内存4 GB;Windows 8系统.将本文方法用于雷达距离遥感成像,实验验证本文方法的成像速度,检测本文方法及传统极化SAR分类方法是否对远距离雷达成像产生延时,实验结果如图1所示.由图1可见,本文方法的遥感成像速度远比传统方法快,时间越长本文方法的成像速度越成倍数增加.

为了测验上述两种方法对遥感图像去噪所用时间,用100 MB的数据分别测试两种去噪方法,对比两种方法的去噪时间,对比结果如图2所示.由图2可见,在33 s内本文方法去噪了36 MB的数据,传统方法只去噪了1 MB数据,说明本文方法具有较强的去噪效果.

图1 两种方法遥感雷达距离成像速度对比Fig.1 Comparison of range imaging velocities of remote sensing radar by two methods

图2 两种方法遥感图像去噪时间对比Fig.2 Comparison of denoising time of remote sensing images by two methods

2.2 分类效果分析

为验证本文方法的优势,采用本文方法对4个不同纹理的模拟图像进行分割实验,图像的尺寸为115×108.本文方法经过200次迭代实现了模拟图像的有效分割,原始模拟图像与本文方法获取的分割结果如图3所示.由图3(A)和(B)可见,本文方法分割结果界限明确无模糊现象,与原始图像基本一致,说明本文方法能清晰地分割出4种不同纹理的图像.图3(C)是本文方法分割出的纹理图像均值,清晰的明暗变化表现了纹理与背景间的关系,证明了本文方法分割图像的有效性.

图3 原始模拟图像与本文方法分割结果Fig.3 Original simulated images and segmentation results of proposed method

实验采用的MSTAR数据来源于美国DARPA/AFRL MSTAR项目实际采集的地面静止军用数据.该数据是美国国家实验室采用x波段、HH(微波波束)极化方式、聚束式SAR进行获取,获取的图像数据分辨率较高,图像数据的尺寸为117×117.采用本文方法对不同方向的T72坦克图像进行分割,MSTAR原始图像与本文方法获取的分割结果如图4所示.图4(A)的原始图像由对象、背景、阴影三部分组成.对比图4(A)和(B)可见,本文方法能将原始图像中的对象与阴影部分进行准确分割,且不同区域间的界限清晰,与原始图像基本吻合;图4(C)为图像的均值结果,本文方法可准确划分对象与背景部分,通过该图像可以确定坦克所属位置与角度.

图4 MSTAR原始图像与本文方法分割结果Fig.4 MSTAR original images and segmentation results of proposed method

2.3 图像分类精度对比

为验证本文方法的有效性,分别采用本文方法(方法1)、基于Gabor小波方法(方法2)、基于Log-Gabor小波方法(方法3)和基于Krawtchouk矩方法(方法4),对图5给出的江苏城郊遥感图像和某城区遥感图像的总体分类精度和Kappa系数(比例)进行对比分析.表1为不同方法对图5中初始遥感图像分类的精度和Kappa系数,Kappa系数越大表示遥感图像分类精度越高.由表1可见,在区分能力方面,基于Log-Gabor小波方法比基于Gabor小波方法好,Log-Gabor方法可降低光线,更清晰地成像,Krawtchouk矩可以提升分类精度.本文方法对图5中两种图像的分类精度及Kappa系数值均最高,表明本文方法的分类性能最佳.

图5 初始遥感图像Fig.5 Initial remote sensing images

方法图5(A)总体精度/%图5(A)比例图5(B)总体精度/%图5(B)比例186.250.832 789.730.883 1274.830.701 580.940.737 3378.650.752 681.390.825 7482.660.817 988.420.864 2

2.4 图像分类结果面积与实际调查面积对比

为了证明本文方法分类的精准性,利用ERDAS程序计算分类结果面积,并与实际面积比较,结果列于表2.由表2可见,本文方法得出的分类面积与实际面积最相近,其分类精准性相对于其他方法有较大提升.本文分类方法下林地与建筑用地面积正确率提升最大,分别为12.77%,10.07%,其次是水域与农田,分别为5.12%,4.77%,闲置地提升不明显,为2.14%.实验结果表明,本文方法相比于极化SAR分类方法大幅度提升了遥感雷达距离图像分类的精准性.

表2 不同方法的分类面积对比

表3列出了实验对本文方法分类结果的精度评价.由表3可见,本文方法在水域、农田、林地、建筑用地和闲置地的分类精度均比传统极化SAR分类方法分类精度有所提高,分别提高了5.70%,7.87%,1.24%,7.43%,8.05%.极化SAR分类方法在水域、闲置地等的选取精度较低.相对于传统极化SAR分类方法,本文方法的误分率及漏分率均较低.

综上所述,针对传统方法在遥感成像雷达距离图像进行分类时,未对图像进行平滑处理,导致分类性能较差的问题,本文提出了一种基于偏微分方程的遥感成像雷达距离图像分类方法.首先采用偏微分方程对图像进行平滑处理,再采用偏微分方程实现图像分类,最后通过实验数据验证了在相同时间内,本文方法具有更高的分类精度及成像性能.

表3 分类精度评价

注:1为传统基于极化SAR分类方法;2为本文方法.

猜你喜欢
极化雷达精度
认知能力、技术进步与就业极化
极化雷达导引头干扰技术研究
热连轧机组粗轧机精度控制
基于干扰重构和盲源分离的混合极化抗SMSP干扰
超高精度计时器——原子钟
DLD-100C型雷达测试方法和应用
非理想极化敏感阵列测向性能分析
分析误差提精度
雷达
基于DSPIC33F微处理器的采集精度的提高