横向固定谐振荷载下曲线轨道参数对钢轨位移响应的影响研究

2019-11-27 03:21刘卫丰杜林林刘维宁
振动工程学报 2019年5期

刘卫丰 杜林林 刘维宁

摘要: 建立曲线轨道解析模型,此轨道模型考虑为具有周期性离散弹簧-阻尼支承的曲线Timoshenko梁。在频域内将曲线钢轨的位移及转角表达为轨道模态的叠加,并将周期性结构理论施加于轨道模型的运动方程,进而在一个基本单元内高效地求解轨道的动力响应。将横向固定谐振荷载作用于钢轨轨头,考虑不同扣件刚度、扣件阻尼、扣件间距及曲线半径,研究上述轨道参数对曲线轨道位移响应的影响。经计算分析可知:钢轨轨头的横向位移响应包括平面内和平面外的位移响应,是钢轨平移和扭转效应的叠加;增加扣件刚度或减小扣件间距可导致轨道系统一阶自振的频率增大,而其幅值减小,对于一阶自振频率以下的频段,钢轨位移幅值也有所减小;随着扣件阻尼的增大,一阶自振的幅值显著下降,对于pinned-pinned共振,随着扣件阻尼的增加,跨中处的钢轨位移增大,而扣件上方的位移有所减小;pinned-pinned共振频率随着扣件间距的增大而减小,而其位移幅值增大;对于曲线地铁轨道,曲线半径对钢轨的横向位移基本没有影响,但对竖向位移影響显著,随着曲线半径的增加,钢轨竖向位移幅值显著下降。

关键词: 曲线轨道; 固定谐振荷载; 轨道参数; 钢轨位移; 周期性结构

中图分类号: U213.2+12  文献标志码: A  文章编号: 1004-4523(2019)05-0837-08

DOI:10.16385/j.cnki.issn.1004-4523.2019.05.012

引 言

城市轨道交通在方便市民出行的同时,也存在一些环境问题,其中,最主要的问题之一就是列车运行引起的振动与噪声。而在曲线轨道地段,列车引起的环境振动往往比直线地段要大,尤其是横向振动,其振动幅值要比直线轨道地段大得多[1]。另外,曲线轨道的轮轨相互作用比直线轨道复杂得多,也会产生多种轨道振动与噪声问题,例如钢轨波磨、曲线啸叫等[2-3]。而研究曲线轨道的振动与噪声问题,首先需要研究曲线轨道的动力特性。

一般情况下,对于曲线轨道模型,轨道可以考虑为连续或离散支承上的Euler曲线梁或Timoshenko曲线梁,Timoshenko梁考虑了梁的剪切和弯扭耦合效应,比Euler梁更能全面地反映曲线轨道的动力特性,且对于高频范围内的动力响应,Timoshenko梁比Euler梁更准确。

对于曲线轨道的研究,近年来国内外学者已经开展了一些工作。Kostovasilis等建立一个曲线轨道有限元模型,并比较了曲梁单元和直梁单元的差异[4]。结果显示:相比于直梁单元,虽然曲梁单元更符合实际,但曲梁单元比直梁单元复杂得多,却没有表现出更多优势,所以论文作者推荐采用直梁单元。另外,Kostovasilis等还建立了一个曲线轨道解析模型,可以计算曲线钢轨竖向/横向的相互作用 [5],利用Fourier变换法在波数域内求解了固定谐振荷载作用下曲线钢轨的动力响应。Ang和Dai采用三角函数逼近法推导了移动荷载作用下黏弹性地基上的曲线轨道动力响应的解析解,并讨论了解的收敛性问题[6]。李克飞等推导了移动荷载作用下曲线Timoshenko梁平面外动力响应解析解[7-9],将移动荷载作用下曲线钢轨的位移表达成频率波数域内的外荷载与钢轨传递函数的乘积,而钢轨传递函数通过传递矩阵法求得。另外,张厚贵等建立了车辆-曲线轨道解析模型,并讨论了移动列车作用下的曲线轨道的振动问题[10]。

由于钢轨被轨枕或扣件周期性离散支承,许多学者把周期性理论引入到直线轨道模型中,用于提高计算效率。例如,Grassie等提出了一个周期性Timoshenko梁的轨道模型,并计算了竖向、横向和纵向固定荷载作用下钢轨的动力响应[11-13]。Gry和Gontier基于梁的广义横截面位移法提出一个周期性铁路轨道模型,用于计算轨道的动力响应 [14]。Sheng等推导了在固定荷载作用下无限长周期性Euler梁动力响应的解析解,用于模拟钢轨,并详细分析了振动在钢轨中的传播规律以及轨道的共振特性[15-16]。文献[17-19]基于Floquet变换建立了一个有限元-边界元耦合模型,用于计算轨道-隧道-地层耦合系统的动力响应。Thompson利用周期性结构理论及有限元法分析了轨道的频响函数及频散曲线[20]。马龙祥基于周期性结构理论推导了普通整体道床轨道和浮置板轨道动力响应的解析解[21]。

本文基于周期性结构理论,建立一个曲线轨道解析模型。该模型中,钢轨考虑为曲线Timoshenko梁,支承于周期性离散分布的扣件上,将横向固定谐振荷载作用于钢轨轨头,利用此模型计算了曲线钢轨的平面内和平面外动力响应,并讨论了扣件刚度、扣件阻尼、扣件间距和曲线半径对曲线钢轨位移响应的影响。

1 周期性曲线轨道平面内及平面外动力响应推导  本文所建立的曲线Timoshenko轨道梁具有如下假定:(1)等截面的匀质梁;(2)曲线半径为常数;(3)忽略曲线梁的翘曲变形。曲线梁的坐标系按照右手螺旋法则确定,如图1所示。图1中,R为曲线半径,ux,uy和uz分别为x,y,z三个方向的位移,φx, φy和φz为绕三个坐标轴的转角。在曲线钢轨的轨头上作用一个移动的横向单位谐振荷载eiwFt,速度为v,如图2所示。图2中C点为钢轨横截面的形心,S点为钢轨横截面的剪切中心,扣件的竖向支承和横向支承作用于轨底,而扭转支承作用点位于剪切中心。由于作用在轨头B点上的荷载可以等效为一个作用于钢轨形心C点的横向荷载(属于平面内荷载)和一个绕z轴旋转的力矩荷载h1eiwFt(属于平面外荷载),所以在横向荷载作用下,钢轨将产生平面内和平面外两种运动形式。根据曲线Timoshenko梁理论,平面内与平面外运动方程是解耦的。下式(1)-(3)为频域内曲线轨道的平面内运动方程[22-23],分别表示为x轴和z轴方向的平移运动,以及绕y轴的扭转运动。

[2] Zhang Hougui, Liu Weining, Liu Weifeng, et al. Study on the cause and treatment of rail corrugation for Beijing metro [J]. Wear, 2014, 317(1-2): 120-128.

[3] Thompson D J. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control [M].Oxford: Elsevier, 2009.

[4] Kostovasilis D, Koroma S, Hussein M F M, et al. A comparison between the use of straight and curved beam elements for modelling curved railway tracks [C]. 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.

[5] Kostovasilis D, Thompson D J, Hussein M F M. The effect of vertical-coupling of rails including initial curvature [C]. 22nd International Congress on Sound and Vibration, Florence, Italy, 2015.

[6] Ang K, Dai J. Response analysis of a curved rail subject to a moving load [C]. 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.

[7] 李克飛. 基于变速及曲线车轨耦合频域解析模型的地铁减振轨道动力特性研究[D]. 北京:北京交通大学, 2012.

Li Kefei. Study on the dynamic characteristics of metro vibration mitigation track based on frequency-domain analytical model of coupled vehicle & track in variable-speed and curved sections[D]. Beijing: Beijing Jiaotong University, 2012.

[8] Li Kefei, Liu Weining, Markine V, et al. Analytical study on the dynamic displacement response of a curved track subjected to moving loads [J]. Journal of Zhejiang University (Science A), 2013, 14(12): 867-879.

[9] Li Kefei, Liu Weining, Markine V, et al. Analytical study on the vibration response of curved track subjected to moving load [C]. 2nd International Conference on Railway Engineering, ICRE, Beijing, China, 2012:556-562.

[10] Zhang H, Liu W, Li K, et al. Analytical solution for dynamic response of curved rail subjected to moving train [J]. Journal of Vibroengineering, 2014, 16(4): 2070-2081.

[11] Grassie S L, Gregory R, Harrison D, et al. The dynamic response of railway track to high frequency vertical excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 77-90.

[12] Grassie S L, Gregory R, Johnson K. The dynamic response of railway track to high frequency lateral excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 91-95.

[13] Grassie S L, Gregory R, Johnson K. The dynamic response of railway track to high frequency longitudinal excitation [J]. Journal of Mechanical Engineering Science, 1982, 24(2): 97-102.

[14] Gry L, Gontier C. Dynamic modeling of railway track: A periodic model based on a generalized beam formulation[J]. Journal of Sound and Vibration, 1997, 199: 531-558.

[15] Sheng X, Li M. Propagation constants of railway tracks as a periodic structure[J]. Journal of Sound and Vibration, 2007, 299: 1114-1123.

[16] Sheng X, Jones C J C, Thompson D J. Responses of infinite periodic structures to moving or stationary harmonic loads[J]. Journal of Sound and Vibration, 2005, 282: 125-149.

[17] Clouteau D, Arnst M, Al-Hussaini T M, et al. Free field vibrations due to dynamic loading on a tunnel embedded in a stratified medium[J]. Journal of Sound and Vibration, 2005, 283(1-2): 173-199.

[18] Degrande G, Clouteau D, Othman R, et al. A numerical model for groundborne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J]. Journal of Sound and Vibration, 2005, 293(3-5): 645-666.

[19] Gupta S, Liu Weifeng, Degrande G, et al. Prediction of vibrations induced by underground railway traffic in Beijing[J]. Journal of Sound and Vibration, 2008, 310: 608-630.

[20] Thompson D J. Wheel-rail noise generation, Part III: Rail vibration[J]. Journal of Sound and Vibration, 1993, 161(3): 421-446.

[21] 马龙祥. 基于周期-无限结构理论的车轨耦合及隧道-地层振动响应预测模型研究[D]. 北京:北京交通大学, 2014.

Ma Longxing. Study on the model of coupled vehicle-track and the prediction model for tunnel-ground vibration response based on the periodic-infinite structure theory[D]. Beijing: Beijing Jiaotong University, 2014.

[22] Lee J. In-plane free vibration analysis of curved Timoshenko beams by the pseudospectral method[J]. KSME International Journal, 2003, 17(8): 1156-1163.

[23] Timoshenko S P. Vibration Problems in Engineering [M]. New York: D. Van Nostrand,1955.

[24] Howson W P, Jemah A K. Exact out-of-plane natural frequencies of curved Timoshenko beams[J]. Journal of Engineering Mechanics, 1999, 125(1): 19-25.

[25] Belotserkovskiy P M. Forced oscillations of infinite periodic structures. Vehicle system dynamics [J]. International Journal of Vehicle Mechanics and Mobility, 1998, 29: 85-103.

[26] Belotserkovskiy P M. On the oscillations of infinite periodic beams subjected to a moving concentrated force [J]. Journal of Sound and Vibration, 1996, 193: 705-712.

Abstract: An analytical model of the curved track is presented. The track is modelled as a curved Timoshenko beam supported by periodically-spaced discrete spring-dashpots. The displacement and rotation of the curved track in the frequency domain are expressed as the superposition of track modes, and then the periodic structure theory is applied to motion equations of the curved track, so the dynamic response of the track can be calculated efficiently in a reference cell. The frequency response of the displacement of the curved track due to a lateral non-moving harmonic load on the rail head is calculated, and the effects of some parameters of track are analyzed, including the stiffness, damping and spacing of fasteners, and the radius of curvature. Some conclusions are drawn as follows. The lateral response of the rail head consists of in-plane and out-of-plane motions, which is the superposition of displacement and rotation of the rail. The first-order resonance frequency of the track rises and the displacement amplitude reduces with increasing stiffness or decreasing spacing of the fasteners, and the amplitudes get lower for the frequencies below the first-order resonance frequency. The displacement amplitude of the first-order resonance goes down significantly as the damping gets larger. The displacement increases at mid-span and decreases above a fastener as the fastener damping rises for the pinned-pinned resonances. The frequency of the pinned-pinned resonances becomes lower and its amplitude increases as the fastener spacing gets greater. The radius of curvature does not affect the lateral response for curved metro tracks, whereas the radius affects the vertical response significantly. The vertical displacement goes down greatly as the radius increases.

Key words: curved track; non-moving harmonic load; parameters of track; displacement of rail; periodic structure

作者簡介: 刘卫丰(1975-),男,博士,副教授。电话:(010)51682752;E-mail:wfliu@bjtu.edu.cn