唐跃 翟庆国 胡培远 肖序常 王海涛 王伟 朱志才 吴昊
自然资源部深地动力学重点实验室,中国地质科学院地质研究所,北京 100037
班公湖-怒江缝合带在构造上夹持于拉萨和南羌塘地块之间,是中特提斯洋(或新特提斯洋北支)消减闭合的遗迹,它对研究中特提斯洋构造演化和青藏高原中生代陆块聚合过程具有重要的地质意义(Metcalfe, 1996, 2013; Yin and Harrison, 2000; Panetal., 2012; Zhuetal., 2013)。通常而言,班公湖-怒江缝合带可进一步划分为西段(班公湖-改则)、中段(班戈-那曲)和东段(丁青-怒江)。班公湖-怒江缝合带中段的构造演化最为复杂,由自北向南呈面状分布的三条分支缝合带组成(东巧-安多、北拉-拉弄和永珠-纳木错),分布范围南北宽度超过200km,是研究该缝合带最为关键的区域(图1b)。
岛弧岩浆活动是大洋板块俯冲消减作用的最直接记录,对反演古大洋俯冲及其动力学过程具有至关重要的作用(Stern, 2002; Duceaetal., 2015)。已有研究显示,在班公湖-怒江缝合带西段的羌塘南缘地区发育一条侏罗-白垩纪的岛弧型岩浆岩带(170~110Ma),它是该地区中特提斯洋洋盆北向俯冲的结果(Kappetal., 2005; Lietal., 2014, 2018a, b; Zhuetal., 2016; Haoetal., 2018)。然而在班公湖-怒江缝合带的其它地区,尤其是中段一带的侏罗纪岛弧岩浆作用仍缺乏系统研究(李小波等, 2015; Zengetal., 2016b),对其起源和成因仍不清楚。此外,前人对班公湖-怒江缝合带侏罗纪岛弧型岩浆岩的研究多集中于西段地区,对于中段地区的侏罗纪岩浆岩及其与各分支缝合带之间的关系以及对应的俯冲消减动力学过程尚缺乏有效约束。
本文对班公湖-怒江缝合带中段新近厘定的中晚侏罗世高镁安山岩和闪长岩开展了系统的野外、岩石地球化学和锆石U-Pb年代学研究,在此基础上探讨其成因及其对班公湖-怒江中特提斯洋洋盆俯冲消减动力学过程的约束,为进一步厘清中特提斯洋洋盆的演化提供关键证据。
班公湖-怒江缝合带横贯于青藏高原中部,东西向延伸近2000km(图1a)。沿缝合带断续分布了侏罗纪蛇绿岩、俯冲增生杂岩、侏罗-白垩纪中酸性岩浆岩和洋岛型岩石,它们保留了较为完整的中特提斯洋从扩张到俯冲消减、直至闭合的地质记录。前人的研究结果表明,班公湖-怒江缝合带蛇绿岩主要形成于侏罗纪,且以中侏罗世为主(Wangetal., 2016)。这些蛇绿岩大都显示出SSZ型蛇绿岩的特征,形成于大洋俯冲过程(Wangetal., 2016),并在晚侏罗世到早白垩世构造侵位于大陆边缘之上。侏罗纪岩浆岩主要分布在班公湖-怒江缝合带内及以北的南羌塘地块南缘,又以缝合带西段最为发育。这些岩浆岩显示出典型岛弧岩浆岩特征,是班公湖-怒江洋北向俯冲的直接地质记录。白垩纪岩浆岩沿着缝合带及两侧地块边缘广泛发育,通常被认为与班公湖-怒江洋的消减闭合及伴随的板片断离、地壳拆沉作用有关(Zhuetal., 2011, 2016; Huetal., 2017)。
班公湖-怒江缝合带中段,也称藏北湖区,是整条缝合带内最宽广,也是蛇绿岩出露范围最广的地区(王希斌等, 1987)。自北向南,中段地区的蛇绿岩可划分为三条亚带,分别为东巧-安多、北拉-拉弄和永珠-纳木错蛇绿岩亚带,它们代表了班公湖-怒江洋中段不同分支洋盆或小洋盆闭合的遗迹(图1b)。已有研究资料显示,东巧和安多蛇绿岩形成于早侏罗世(188~181Ma)的弧前或弧后环境(Liuetal., 2016; Wangetal., 2016)。变质底板角闪石K-Ar和40Ar/39Ar年龄约为175~179Ma,暗示这些蛇绿岩形成不久即发生仰冲就位(王希斌等, 1987; Zhouetal., 1997)。北拉-拉弄和永珠-纳木错蛇绿岩主要形成于中-晚侏罗世(172~148Ma),是班公湖-怒江洋南侧分支洋盆演化的产物(Zhongetal., 2015, 2017; Tangetal., 2018a; Zengetal., 2018)。安多微陆块位于班公湖-怒江缝合带内,夹持于东巧-安多和北拉-拉弄蛇绿岩亚带之间,是缝合带内部一独立的微陆块,主要由前寒武变质基底、侏罗-白垩纪花岗岩和中新生代沉积盖层组成(Guynnetal., 2006, 2013; Zhangetal., 2014)。在安多微陆块中北部发育一套高压麻粒岩,峰期变质时代大致为180~175Ma,折返冷却年龄大致为~165Ma,并在早白垩世完全剥露地表(Guynnetal., 2006; Zhangetal., 2014)。这套高压麻粒岩记录了东巧-安多北侧分支洋盆关闭后,安多微陆块向南羌塘地块发生大陆俯冲并折返的全过程(Guynnetal., 2006)。
图1 青藏高原大地构造简图(a,据Zhai et al., 2016修改)、班公湖-怒江缝合带中段地质简图(b)和佳琼地区地质简图(c) KSZ-昆仑缝合带;JSZ-金沙江缝合带:LSSZ-龙木错-双湖缝合带;BNSZ-班公湖-怒江缝合带;IYZSZ-印度-雅鲁藏布江缝合带Fig.1 Tectonic framework of the Tibet Plateau (a, modified after Zhai et al., 2016), simplified geological map of the middle Bangong-Nujiang suture zone (b) and geological sketch map of the Jiaqiong area (c)
本次研究区地处藏北班戈县佳琼镇(图1c),大地构造位置位于东巧-安多和北拉-拉弄蛇绿岩亚带之间。区内出露地层主要包括中上泥盆统查果罗玛组(D2-3c)、下二叠统下拉组(P1x)、上三叠统确哈拉群(T3Q)、上三叠-下侏罗统木嘎岗日群(MQ)、中上侏罗统接奴群(J2-3j)和下白垩统去申拉组(K1q)。古生代地层主要由灰岩组成,并夹厚度不等的砂岩,它们与区内其他地层均呈断层接触。确哈拉群主要为一套浅变质岩系,以板岩、片岩为主,与中生代地层呈断层接触或被侏罗纪火山岩不整合覆盖。木嘎岗日群为一套复理石沉积,以硅质岩、砂岩、泥页岩为主,并夹有灰岩团块。接奴群主要由板岩、砂岩和泥页岩组成,并含有玄武质和安山质火山岩夹层。一般认为,木嘎岗日群和接奴群代表了一套弧前俯冲增生杂岩,与中特提斯洋北向俯冲消减有关,并在洋盆消减闭合过程中发生不同程度的剪切破碎(Zengetal., 2016a; Maetal., 2018)。蛇绿岩主要分布在达如错东部地区,以橄榄岩和堆晶杂岩为主,并见有少量玄武岩,它们主要构造就位于木嘎岗日群之中,并被后期早白垩世花岗岩侵入(唐跃等, 2015)。去申拉组主要为一套中酸性火山岩、火山角砾岩、砾岩和砂岩等,不整合覆盖于接奴群之上。
本项研究涉及的侏罗纪岩浆岩以安山岩为主,并有少量闪长岩呈脉体侵入于蛇绿岩的橄榄岩之中。安山岩主要出露于佳琼镇周边和达如错东岸,佳琼镇西侧安山岩呈角度不整合覆盖在确哈拉群之上,而南侧以断层与接奴群接触。达如错东地区安山岩主要与蛇绿岩和木嘎岗日群呈断层接触(图1c),并在局部呈不规则脉体侵入到木嘎岗日群增生杂岩之中,或呈不规则构造岩块混杂产出于木嘎岗日岩群(图2a)。闪长岩主要呈岩脉产出,脉宽一般在20~100cm,长5~8m。野外和镜下观察显示,安山岩和闪长岩均经历了不同程度的后期蚀变(绿泥石化和绢云母化)(图2)。安山岩呈深灰色-灰绿色,斑状结构,斑晶主要为角闪石(2%~8%)、辉石(1%~5%)和斜长石(3%~10%),基质主要由斜长石微晶和隐晶质组成(图2b, d)。闪长岩比安山岩经历了更强的蚀变,主要矿物组成为斜长石(50%~55%)、角闪石(30%~40%)和石英(2%~8%),并可见少量辉石、黑云母(<5%)(图2f)。斜长石发生不同程度绢云母化,部分角闪石发生绿泥石化。
图2 西藏班戈佳琼地区高镁安山岩和闪长岩野外和显微照片 Amp-角闪石;Pl-斜长石;Qz-石英Fig.2 Field photographs and microphotographs of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
锆石分选在河北省区域地质调查研究所完成,采用传统的重液和磁选方法分选。锆石透、反射光照片和阴极发光图像拍摄在中国地质科学院地质研究所完成,基于此进一步观察锆石内部结构。锆石U-Pb定年在北京科荟测试技术有限公司完成,利用LA-ICP-MS系统对锆石开展U-Th-Pb同位素分析。激光剥蚀系统为ESI NWR 193nm,ICP-MS为Analytikjena PlasmaQuantmS Elite ICP-MS。具体的分析过程参见侯可军等(2009)。分析过程中采用氦气作载气,氩气为补偿气以调节灵敏度,分析束斑为25μm,激光的能量为6.25J/cm2,脉冲频率为8Hz。U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正,每分析5~10个样品点,分析2次GJ-1。对于与分析时间有关的U-Th-Pb同位素比值漂移、元素含量校正及U-Th-Pb同位素比值和年龄计算,均采用软件ICPMSDataCal 8.0(Liuetal., 2010)完成。锆石样品的U-Pb年龄谐和图绘制和加权平均年龄计算采用Isoplot 3.0完成(Ludwig, 2003)。
图3 西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb年龄谐和图和代表性锆石阴极发光(CL)图像Fig.3 Zircon U-Pb concordia diagrams and representative CL images of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
锆石Lu-Hf同位素测试在中国科学院地质与地球物理研究所多接收等离子体质谱实验室完成,测试仪器为Thermo Fisher公司生产的Neptune Plus多接收电感耦合等离子体质谱仪与193nm ArF准分子激光剥蚀系统联用构成的LA-MC-ICP-MS。锆石Lu-Hf同位素分析点位与U-Pb测年点位重合。详细的分析过程见Wuetal. (2006) 和Xieetal. (2008)。实验过程中采用的束斑直径约为44μm,剥蚀能量为10J/cm2,剥蚀时间为26s,脉冲频率为8Hz。标准锆石Mud Tank和GJ-1作为双重外标,监测仪器稳定程度。本次分析过程中获得的Mud Tank和GJ-1标样测试值分别为0.282501±5(2SD,n=10)和0.281997±8(2SD,n=19),这与推荐值在误差范围内一致(Moreletal., 2008; Woodhead and Hergt, 2005)。
全岩主量和微量元素分析在中国地质科学院国家地质实验测试中心完成。主量元素测定采用熔片X荧光光谱法(XRF),使用的仪器为日本岛津(SHIMADZU)公司生产的MXF-2100 型X射线荧光光谱仪。样品烧失量(LOI)的测定采用马弗炉加热烧失法。称取0.5g预先干燥的粉末样品置于坩埚中,然后放入马弗炉加热至1000℃并恒温90min,最后将样品冷却,称取烧失后的重量。烧失前后质量差与样品重量百分比即为烧失量。主量元素的分析精度优于5%。
全岩微量元素分析利用PE300D等离子体质谱仪(ICP-MS)完成,执行标准为DZ/T0223-2001。分析过程首先将样品粉末烘干,准确称取约50mg加入HF和HNO3溶解,然后再密封到高压釜中,转移至烘箱内加热48h,然后开盖蒸干。蒸干后的样品加入6N HNO3再次密封到高压釜中,转移至烘箱内加热烘干。冷却后,用3N HNO3充分溶解样品,再用MQ水将样品稀释2000倍,摇匀后送至ICP-MS测定微量元素。分析检测下限为(0.n~n)×10-9,分析误差一般小于5%。
表1西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb定年结果
Table 1 Zircon U-Pb age data of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
测点号Pb∗ThU(×10-6)Th/U同位素比值年龄(Ma)207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ17T046-安山岩-013615439821.570.0494560.0015740.1735230.0056130.0253820.000269168.671.3162.54.9161.61.7-02422559330.270.0505220.0014840.2909500.0085940.0416860.000401220.468.5259.36.8263.32.5-03288748561.020.0488950.0018750.1704500.0063720.0252740.000256142.790.7159.85.5160.91.6-04511804340.410.0605170.0015170.8759860.0216780.1050520.000923620.453.7638.811.7643.95.4-05361724600.370.0560840.0014180.5492120.0136340.0708480.000585457.555.6444.58.9441.33.5-06206026270.960.0495280.0021140.1726880.0074110.0253100.000482172.3127.8161.76.4161.13.0-07441525870.260.0566260.0023030.5764110.0222670.0735180.001053476.090.7462.214.3457.36.3-08206286350.990.0496710.0028160.1683860.0069540.0250450.000410189.0131.5158.06.0159.52.6-09215386930.780.0497300.0024510.1742180.0101950.0251450.000725189.0114.8163.18.8160.14.6-1060110420430.540.0502300.0023070.1755930.0081020.0252430.000504205.6107.4164.37.0160.73.2-11174145550.750.0503530.0025400.1778490.0095630.0254220.000419213.0112.0166.28.2161.82.6-1261265515431.720.0501940.0016750.1776020.0082730.0253850.000793211.277.8166.07.1161.65.017T056-安山岩-0194242421.760.0500940.0035440.1789150.0121440.0261250.000452198.2166.6167.110.5166.32.8-02104242951.440.0492000.0031740.1787430.0103070.0259520.000387166.8135.2167.08.9165.22.4-03154934431.110.0513200.0022640.1833250.0082370.0258160.000335253.8101.8170.97.1164.32.1-04103142931.070.0507630.0023710.1831230.0086730.0261470.000348231.6113.9170.77.4166.42.2-05167124141.720.0502130.0022180.1814180.0080170.0260200.000336205.6103.7169.36.9165.62.1-06103232941.100.0504280.0038840.1803530.0139940.0257630.000557213.0175.0168.412.0164.03.5-07199034651.940.0483670.0044820.1757860.0169530.0261080.000423116.8207.4164.414.6166.12.7-08103122881.080.0497310.0024030.1776950.0081950.0259390.000299189.0117.6166.17.1165.11.9-09114492831.590.0494260.0024720.1764500.0088030.0257580.000370168.6112.0165.07.6163.92.3-10156274231.480.0505620.0026050.1809920.0095650.0257840.000427220.4123.1168.98.2164.12.7-1193092591.200.0489560.0033430.1733850.0108180.0257860.000399146.4151.8162.49.4164.12.5-12114753031.570.0507450.0049990.1784170.0176020.0258080.000512227.8214.8166.715.2164.33.2-13207535531.360.0504390.0019120.1804680.0069380.0258700.000420216.788.9168.56.0164.62.6-1493412431.400.0494760.0037330.1750440.0126420.0258760.000698172.3166.6163.810.9164.74.4-15144524331.040.0490530.0027010.1752140.0095380.0258480.000345150.1129.6163.98.2164.52.2-16166904391.570.0500490.0025040.1775370.0084900.0259380.000365198.2116.7165.97.3165.12.3-17196555481.200.0480840.0019910.1720120.0067970.0258780.000300101.9-100.9161.25.9164.71.9-18238246611.250.0502390.0020850.1809030.0078020.0258730.000361205.696.3168.86.7164.72.317T063-闪长岩-0192252950.760.0500950.0025080.1746580.0079880.0255080.000380198.2121.3163.56.9162.42.4-0282182610.830.0498140.0036670.1722370.0116100.0255820.000523187.1-25.0161.410.1162.83.3-0382262560.880.0493820.0022280.1737080.0078360.0255500.000415164.9137.9162.66.8162.62.6-0481922400.800.0500790.0027200.1731250.0086220.0255000.000408198.2121.3162.17.5162.32.6
续表1
Continued Table 1
测点号Pb∗ThU(×10-6)Th/U同位素比值年龄(Ma)207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ-0571622060.780.0487210.0029440.1731050.0106760.0257990.000391200.1133.3162.19.2164.22.5-0692232870.780.0480170.0021140.1685390.0072630.0255140.000367101.9109.2158.26.3162.42.3-07195985801.030.0518590.0021840.1828210.0077280.0255100.000344279.791.7170.56.6162.42.2-08133963961.000.0503040.0024360.1746540.0079120.0254100.000352209.3108.3163.46.8161.82.2-09124063461.170.0512320.0031740.1778440.0096100.0255510.000447250.1142.6166.28.3162.62.8-1092342950.790.0483100.0027130.1737600.0093430.0255960.000541122.3120.4162.78.1162.93.4-11102533040.830.0501940.0020160.1773720.0072120.0256150.000372211.292.6165.86.2163.02.3-1271912340.820.0498500.0025670.1746030.0082870.0254900.000390187.1118.5163.47.2162.32.5-13113223300.980.0482600.0022340.1703570.0075380.0256140.000476122.394.4159.76.5163.03.0-14163995120.780.0499890.0016970.1765760.0061430.0255970.000356194.575.0165.15.3162.92.2-1592442890.840.0501530.0022910.1768550.0082860.0255620.000375211.2102.8165.47.1162.72.4-16102453070.800.0500110.0030810.1761240.0109120.0255350.000417194.5137.9164.79.4162.52.6-1771762360.750.0491110.0027230.1719170.0093380.0254420.000368153.8131.5161.18.1162.02.3-1881902470.770.0484860.0025640.1706260.0087930.0256540.000343124.2118.5160.07.6163.32.2-19164404750.930.0485350.0025180.1713110.0094220.0253280.000302124.2118.5160.68.2161.21.9-20113363430.980.0504310.0026530.1759480.0086790.0255160.000378216.7122.2164.67.5162.42.4-2171712350.720.0503610.0031920.1769640.0113910.0255480.000395213.0148.1165.49.8162.62.5-22102583250.790.0501660.0036110.1734210.0115820.0254360.000572211.2163.9162.410.0161.93.617T081-安山岩-0182012530.800.0497960.0030640.1736530.0110290.0252120.000348187.1144.4162.69.5160.52.2-0292352690.870.0465810.0030630.1635980.0105230.0254570.00045027.9161.1153.89.2162.12.8-03165074591.110.0483810.0018320.1679320.0064010.0251760.000284116.886.1157.65.6160.31.8-04103093071.010.0504340.0022770.1749420.0076060.0253210.000296216.7105.5163.76.6161.21.9-0592922821.030.0505780.0022500.1746450.0083000.0250160.000404220.499.1163.47.2159.32.5-0651291600.800.0502560.0041700.1722070.0130580.0252050.000664205.6-6.5161.311.3160.54.2-0761901811.050.0517150.0051260.1787750.0168800.0253560.000625272.3229.6167.014.5161.43.9-08229265771.600.0484030.0016800.1686220.0055280.0253430.000347120.581.5158.24.8161.32.2-09102422980.810.0502070.0025600.1772610.0100330.0254630.000404211.2118.5165.78.7162.12.5-1061941791.090.0480480.0024910.1677900.0087630.0254380.000348101.9118.5157.57.6161.92.2-11133453760.920.0549990.0020270.1900300.0064110.0251740.000328413.086.1176.75.5160.32.1-12197505091.480.0491560.0023370.1719250.0084380.0253320.000353153.8111.1161.17.3161.32.2-13133843641.060.0492970.0021140.1724090.0073400.0254330.000334161.2100.0161.56.4161.92.1-1471792160.830.0495440.0034610.1713970.0125620.0249810.000438172.3-36.1160.610.9159.12.8-15102962811.050.0499750.0033460.1726910.0120120.0249960.000457194.5155.5161.810.4159.22.9-16187114671.520.0490420.0019520.1723870.0073630.0254080.000330150.192.6161.56.4161.72.1-17144744051.170.0511950.0017530.1773000.0055990.0252840.000288250.179.6165.74.8161.01.8-1892372630.900.0498490.0020630.1735380.0067400.0254210.000351187.196.3162.55.8161.82.2
本次研究对4件样品(3件安山岩和1件闪长岩)进行了锆石U-Pb定年,分析测试结果见图3和表1。透反射和阴极发光图像表明,所有锆石均具有相似的晶体形态和内部结构,未见继承核与增生边。锆石为短柱状至长柱状、自形-半自形晶体,长约150~300μm,长宽比1:1到3:1,并具有密集的岩浆振荡环带(图3)。安山岩和闪长岩锆石具有相似的Th和U含量,其变化范围分别为152×10-6~2655×10-6和160×10-6~2043×10-6,Th/U比值为0.26~1.94。这些特征表明这些锆石均为典型的岩浆成因锆石(Hoskin and Schaltegger, 2003)。
3件安山岩样品获得了相似的206Pb/238U加权平均年龄,分别为161.0±1.7Ma (17T046;n=8, MSWD=0.09)、164.9±1.1Ma (17T056;n=18, MSWD=0.10)和161.0±1.1Ma (17T081;n=18, MSWD=0.16)(图3)。样品17T046中4颗锆石具有较老的206Pb/238U年龄,分别为263Ma、441Ma、457Ma和643Ma(表1),可能代表了继承或捕获锆石的年龄。闪长岩样品(17T063)采自侵入到橄榄岩中的岩脉,获得锆石206Pb/238U加权平均年龄为162.5±1.0Ma (n=22, MSWD=0.07),这与安山岩样品测年结果基本一致,表明安山岩和闪长岩是同期岩浆作用的产物。
表2西藏班戈佳琼高镁安山岩和闪长岩锆石Hf同位素分析结果
Table 2 Zircon Hf isotopic compositions of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
测点号176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ176Hf/177HfiεHf(t)2σtDM (Ma)tDM2 (Ma)fLu/Hf17T046-010.0653300.0019570.2824710.0000210.282465-7.30.711341672-0.94-030.0832510.0028910.2824510.0000230.282443-8.10.811931723-0.91-060.0728240.0020810.2824540.0000200.282447-7.90.711631712-0.94-080.0462240.0013280.2824790.0000210.282475-7.00.811041651-0.96-090.0614710.0021060.2825670.0000360.282561-3.91.310001458-0.94-100.0648500.0022740.2824880.0000280.282481-6.81.011191637-0.93-110.0687470.0019150.2824630.0000190.282457-7.60.711441689-0.9417T056-010.0481730.0014320.2824550.0000230.282451-7.80.811411703-0.96-020.0294100.0008750.2824020.0000210.282399-9.60.711991818-0.97-030.0572330.0016800.2824320.0000220.282427-8.60.811811756-0.95-040.0676740.0019180.2824800.0000210.282474-6.90.811201650-0.94-050.0713990.0020160.2824550.0000210.282449-7.80.811591706-0.94-060.0772290.0020690.2825080.0000280.282501-6.01.010851589-0.94-070.0354950.0010450.2824970.0000200.282494-6.20.710701606-0.97-080.0920840.0027470.2824630.0000260.282454-7.60.911711694-0.92-090.0977960.0028570.2825780.0000260.282569-3.50.910041436-0.91-100.0510510.0014460.2824430.0000210.282439-8.20.811581729-0.96-110.0862390.0024240.2825680.0000250.282560-3.90.910071456-0.93-120.0423630.0011810.2825310.0000210.282528-5.00.710261530-0.96-130.0615280.0017680.2824760.0000220.282471-7.00.811211657-0.95-140.0714230.0020470.2824180.0000220.282412-9.10.812131789-0.94-150.0731110.0020840.2825250.0000220.282518-5.40.810601551-0.94-160.0507090.0015170.2824810.0000220.282476-6.80.811071645-0.9517T063-010.0300450.0011610.2824360.0000220.282433-8.40.811591744-0.97-020.0317970.0012550.2824120.0000220.282408-9.30.811961800-0.96-030.0268790.0010230.2823980.0000190.282395-9.80.712091830-0.97-040.0349010.0011510.2824230.0000150.282419-8.90.511781775-0.97-050.0277340.0010010.2824520.0000190.282449-7.90.711321708-0.97-060.0276100.0009530.2824140.0000160.282411-9.20.611841792-0.97-070.0329240.0011580.2824050.0000190.282402-9.60.712031814-0.97-080.0320180.0010990.2823980.0000260.282395-9.80.912111830-0.97-090.0345520.0012270.2824410.0000200.282438-8.30.711541734-0.96-100.0255570.0008750.2824040.0000170.282402-9.60.611951814-0.97-110.0302420.0010060.2824510.0000170.282448-7.90.611341711-0.97-120.0340380.0011240.2824010.0000160.282397-9.70.612081824-0.97-130.0305110.0010410.2824200.0000190.282417-9.00.711781780-0.97-140.0376470.0012570.2823990.0000190.282395-9.80.712151828-0.96-150.0338540.0012590.2824350.0000200.282431-8.50.711631747-0.96-160.0310470.0009990.2823770.0000180.282374-10.50.612371876-0.97-170.0409970.0014050.2824320.0000200.282428-8.60.711731756-0.9617T081-010.0208750.0009960.2824840.0000140.282481-6.70.510861636-0.97
续表2
Continued Table 2
测点号176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ176Hf/177HfiεHf(t)2σtDM (Ma)tDM2 (Ma)fLu/Hf-020.0161460.0007650.2824760.0000170.282474-7.00.610911653-0.98-030.0283120.0013300.2824420.0000170.282438-8.30.611561733-0.96-040.0165690.0008020.2825020.0000160.282500-6.10.610561595-0.98-050.0117090.0005770.2824410.0000170.282439-8.20.611351731-0.98-060.0199080.0009580.2824350.0000180.282432-8.50.611551747-0.97-070.0379330.0017360.2824650.0000160.282460-7.50.611351683-0.95-080.0233660.0010530.2824030.0000140.282400-9.60.512021819-0.97-090.0208690.0009740.2824480.0000160.282445-8.00.611371717-0.97-100.0182430.0008570.2824560.0000140.282454-7.70.511221699-0.97-110.0267410.0012480.2824630.0000140.282459-7.50.511241686-0.96-120.0100570.0004820.2824840.0000160.282483-6.70.610721634-0.99-130.0124240.0005990.2824510.0000150.282449-7.90.511221709-0.98-140.0219050.0010340.2824850.0000170.282482-6.70.610861634-0.97-150.0196660.0009320.2824260.0000180.282423-8.80.611671767-0.97-160.0117000.0005580.2824380.0000160.282437-8.30.611381736-0.98
图4 西藏班戈佳琼高镁安山岩和闪长岩锆石U-Pb年龄-εHf(t)值图解 达如错安山岩数据据李小波等 (2015), Zeng et al. (2016b);安多花岗岩数据据刘敏等 (2011)Fig.4 Plots of U-Pb ages vs. εHf(t) values for Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
对4件锆石样品开展Lu-Hf同位素分析,结果见表2。3件安山岩样品锆石具有相似的(176Hf/177Hf)i比值(0.282399~0.282569)和相对一致的εHf(t)值(-9.6~-3.5),对应的一阶段(tDM)和二阶段(tDM2)锆石Hf同位素模式年龄分别为1000~1213Ma和1436~1819Ma(图4)。闪长岩样品锆石表现出相对均一的(176Hf/177Hf)i比值(0.282374~0.282449)和εHf(t)值(-10.5~-7.9),对应的一阶段(tDM)和二阶段(tDM2)锆石Hf同位素模式年龄分别为1132~1237Ma和1708~1876Ma(图4)。因此,安山岩和闪长岩具有相似的锆石Hf同位素组成,这与相邻地区以及安多微陆块内已报道的近同期中酸性岩浆岩具有相似的锆石Hf同位素组成(图4; 刘敏等, 2011; 李小波等, 2015; Zengetal., 2016b)。
安山岩和闪长岩全岩地球化学测试结果见表3。测试样品具有相对高的烧失量(1.00%~6.68%),表明样品均受到不同程度的蚀变,这与野外和镜下观察到岩石经历不同程度的绿泥石化和绢云母化相一致。通常而言,SiO2、MgO、FeO、TiO2、Al2O3等主量元素和稀土(REE)、高场强元素(HFSE),以及Ba、Th、U等元素在蚀变过程中相对不活动(Pearce, 2014)。因此,本文主要基于这些相对不活动元素进行岩石的类型和成因讨论。在Mg#-元素图解上(图5),除K2O和Na2O外,Mg#与其他元素基本呈现较好的线性关系。
安山岩SiO2含量为52.03%~55.90%,Al2O3为15.74%~17.35%,MgO为4.14%~5.68%、FeOT为6.71%~7.81%,对应的Mg#值介于50.9~58.0之间(表3)。在Zr/TiO2-SiO2图解中,所有样品均落入安山岩的区域内(图6a)。在Th-Co图解上(图6b), 它们均呈现出高钾钙碱性岩浆岩的特征(Hastieetal., 2007)。在给定的SiO2条件下,安山岩样品具有相对高的MgO含量,大部分样品均落入高镁安山岩的范畴(Kelemen, 1995; Kelemenetal., 2007; 图6c)。同时,在SiO2-FeOT/MgO图解上,安山岩相对于赞岐岩具有相对低的SiO2含量和高的FeOT/MgO比值,暗示其可能并非由赞岐岩直接分异而来(Tatsumi, 2006)(图6d)。微量元素组成上,安山岩相对富集轻稀土元素(LREE; (La/Yb)N>8),同时显示出Eu的负异常(Eu/Eu*=0.70~0.87)(图7a)。原始地幔标准化蛛网图上,所有样品均显示出了一致的配分曲线,富集Rb、Th、U、Pb等元素,亏损Ba、Nb、Ta和Ti等元素(图7b)。这些特征与前人报道的达如错高镁安山岩相一致(李小波等, 2015; Zengetal., 2016b)。
表3西藏班戈佳琼高镁安山岩和闪长岩全岩主量(wt%)和微量(×10-6)元素组成
Table 3 Whole-rock major (wt%) and trace (×10-6) element compositions of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
样品号17T04517T04617T04717T04817T04917T05017T05217T05317T05417T05617T057岩性安山岩SiO254.4755.1654.2254.5455.9055.4955.4654.7654.7455.5653.79Al2O316.7216.5016.6616.7417.3117.3515.7416.6217.2616.6416.75MgO4.765.174.894.994.144.165.684.825.044.765.01Na2O3.273.473.743.344.594.353.093.333.113.622.14K2O2.341.102.152.271.401.451.842.331.062.752.51P2O50.170.160.170.170.180.180.140.170.150.170.15TiO20.800.830.790.790.810.810.700.800.860.780.77CaO6.937.606.536.526.046.347.626.748.435.847.86FeOT7.597.817.707.707.097.177.447.637.226.717.25MnO0.110.100.090.090.080.080.150.090.110.130.15LOI2.061.342.582.122.171.791.351.921.003.602.50Mg#52.854.153.153.651.050.957.652.955.455.855.2Sc252624.925.721.924.22924.825.319.525.5Ti49535038494451514977519245625013517246434731V200192203211193206213202198175198Cr52.176.24949.223.228.113348.644.331.450.5Co27.12625.928.424.426.930.825.423.621.629.9Ni36.328.125.325.346.846.659.223.917.320.227.9Ga18.418.317.918.918.319.116.918.218.617.617.8Ge1.431.451.591.581.371.431.421.431.481.31.39Rb10756.997.310969.177.891.510866.6117183Sr358312325355365393337363324354357Y22.223.421.3222221.919.221.624.12220.4Zr141144130137144149100137135143108Nb7.127.877.077.47.467.335.417.438.137.516.58Cs2.63.282.182.841.942.383.472.964.981.717.2Ba476176455396231259301403183717386La33.329.931.230.637.734.223.330.729.930.728.1Ce63.557.960.258.371.864.744.959.257.457.954.3Pr7.186.536.756.727.837.075.156.646.496.596.21Nd26.22525.62629.527.420.524.925.225.723.9Sm5.235.275.125.145.515.24.154.975.174.984.76Eu1.271.291.231.241.251.241.111.241.351.161.14Gd4.674.944.484.34.554.443.684.424.754.474.07Tb0.710.760.690.670.730.710.580.690.760.690.66Dy3.974.424.034.124.24.213.594.084.494.113.84Ho0.840.910.820.840.860.850.730.820.90.850.78Er2.442.622.432.392.482.482.132.442.672.512.29Tm0.350.380.340.340.350.350.310.350.380.360.33Yb2.282.522.242.252.392.352.042.252.552.392.17Lu0.340.390.350.340.370.360.320.350.390.360.33Hf3.843.993.683.783.994.233.263.763.6743.37Ta0.560.630.590.590.610.620.540.590.660.610.55Pb14.55.915.114.213.61428.113.24.38.599.33Th13.512.912.91313.714.210.513.111.513.611.4U2.6822.062.062.162.21.492.161.482.572.25Eu/Eu∗0.790.770.790.810.760.790.870.810.830.750.79
续表3
Continued Table 3
样品号17T05817T05917T06017T06117T06317T06417T06517T06617T06717T06817T069岩性安山岩闪长岩SiO253.8453.0653.9752.0361.2059.6460.6961.2759.9757.2161.37Al2O316.7216.1616.7015.9015.5815.4515.4515.3615.6515.5715.44MgO5.075.354.944.893.944.414.514.144.165.284.58Na2O2.112.612.044.214.233.514.134.154.182.784.38K2O2.502.892.622.611.801.842.001.862.242.981.52P2O50.150.160.150.140.130.130.130.120.130.160.13TiO20.770.740.770.670.570.580.560.560.590.720.58CaO8.056.237.425.284.694.683.504.394.315.314.37FeOT7.476.897.476.934.884.994.864.665.326.705.35MnO0.130.130.130.150.090.080.070.080.090.150.09LOI2.356.222.976.683.004.674.093.333.392.692.97Mg#54.758.054.155.759.061.262.361.358.258.460.4Sc26.322.625.622.317.217.516.817.216.822.517.4Ti48744672479543673530357334913394350344603473V198178199175120117122109123154115Cr50.938.85441.994.495.198.594.992.87696.3Co29.526.329.822.916.618.217.316.917.524.716.4Ni27.322.427.722.82424.924.423.824.227.623.7Ga18.216.517.815.616.615.215.71515.816.314.9Ge1.471.281.431.241.271.211.161.111.161.431.17Rb18712519798.456.386.978.553.270.116652.3Sr383344372371356199250280318260290Y2120.32119.317.817.716.115.81621.413.4Zr10912611699.2177135143140129152127Nb6.767.066.746.128.177.978.087.657.978.797.79Cs22.82.99201.840.61.60.960.40.731.780.59Ba4064998001738337238300301375427222La28.629.828.726.828.328.426.227.128.531.128.5Ce55.657.155.651.351.95349.250.952.258.852.6Pr6.266.436.265.815.565.595.195.335.496.615.51Nd23.125.423.52220.420.418.819.820.125.320.1Sm4.814.954.824.354.023.923.633.813.924.953.66Eu1.141.181.130.951.010.990.890.9411.130.96Gd4.214.24.284.013.73.523.233.313.484.372.97Tb0.680.670.660.620.570.560.510.530.560.680.5Dy3.973.993.853.553.363.293.093.163.284.112.85Ho0.80.830.790.750.680.690.610.640.670.830.58Er2.342.352.392.171.981.981.751.891.932.471.64Tm0.330.330.340.310.290.280.250.270.270.340.24Yb2.22.262.232.041.941.881.621.761.822.321.68Lu0.340.340.330.320.290.280.250.270.280.360.26Hf3.463.583.493.24.63.723.743.923.734.113.71Ta0.550.570.550.480.710.70.680.70.740.750.71Pb11.210.812.38.8716.310.712.313.516.912.215.8Th11.512.111.810.715.612.712.212.61314.812.9U2.272.362.322.413.392.412.32.352.582.92.61Eu/Eu∗0.770.790.760.700.800.810.790.810.830.740.89
图5 西藏班戈佳琼高镁安山岩和闪长岩SiO2、Al2O3、K2O+Na2O、Fe2O3T、Cr、Sr、Y、La、Yb对Mg#关系图解 达如错安山岩数据据李小波等(2015)和Zeng et al. (2016b),后同Fig.5 Elements of SiO2, Al2O3, K2O+Na2O, Fe2O3T, Cr, Sr, Y, La and Yb plotted against Mg# of the high-Mg Jiaqiong andesite and diorite in the Bange County, Tibet
图6 西藏班戈佳琼高镁安山岩和闪长岩SiO2-Zr/TiO2 (a,据Winchester and Floyd, 1977)、Th-Co (b,据Hastie et al., 2007)、SiO2-MgO (c,据McCarron and Smellie, 1998)和FeOT/MgO-SiO2 (d,据Tatsumi, 2006)图解Fig.6 SiO2 vs. Zr/TiO2 (a, after Winchester and Floyd, 1977), Th vs. Co (b, after Hastie et al., 2007), SiO2 vs. MgO (c, after McCarron and Smellie, 1998) and FeOT/MgO vs. SiO2 (d, after Tatsumi, 2006) diagrams of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
图7 西藏班戈佳琼高镁安山岩和闪长岩球粒陨石标准化稀土元素配分图(a、c)和原始地幔标准化微量元素蛛网图(b、d)(标准化值据Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE diagrams (a, c) and primitive-normalized multi-element spider diagrams (b, d) of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet (normalization values are from Sun and McDonough, 1989)
闪长岩相对于安山岩具有高的SiO2(57.21%~61.37%)含量和相对低的Al2O3(15.36%~15.65%)、FeOT(4.66%~6.70%)含量。同时,与安山岩类似,也具有较高的MgO(3.94%~5.28%)含量和Mg#值(58.2~62.3)(表3)。在Th-Co图解上(图6b),所有样品均显示出高钾钙碱性岩浆岩的特征。在SiO2-MgO(图6c, d),闪长岩显示出与安山岩类似的地球化学特征,暗示二者可能为同源岩浆的产物。而在SiO2-FeOT/MgO图解上,闪长岩显示出与分异的赞岐岩类似的地球化学组成。闪长岩与安山岩的稀土和微量元素配分曲线基本一致,富集LREE,具负Eu异常(Eu/Eu*=0.74~0.89)(图7c)。在原始地幔标准化蛛网图上,所有样品也显示出富集Rb、Th、U、Pb,亏损HFSE(Nb、Ta和Ti)的特征(图7d)。
班公湖-怒江缝合带中段佳琼地区高镁安山岩和闪长岩的锆石均具有典型的岩浆成因特征,如岩浆振荡环带和高的Th/U比值,因此,它们的年龄代表了岩浆冷凝结晶的时代。本项研究共获得了4件较好的锆石U-Pb谐和年龄,主要集中于165~161Ma(图3),指示安山岩和闪长岩形成于侏罗纪中晚期,这与前人在达如错东部所报道的高镁安山岩的时代一致(李小波等, 2015; Zengetal., 2016b)。此外,近同期的中酸性岩浆岩在东北部的安多微陆块中也有报道(~170Ma)(刘敏等, 2011; Yanetal., 2016; 李小波等, 2017)。因此,在班公湖-怒江缝合带中段北缘的侏罗纪中酸性岩浆作用主要发育在夹持于东巧-安多和北拉-拉弄蛇绿岩亚带之间的区域内,而在缝合带中段紧邻的南羌塘地块内部(东巧-安多以北地区)基本不发育(Guynnetal., 2006)(图1b)。近年来,在班公湖-怒江缝合带西段以及南羌塘地块西南缘也已报道了多处侏罗纪岛弧型岩浆岩,并认为它们与中特提斯洋北向俯冲有关(Kappetal., 2005; Lietal., 2014, 2018a, b; Haoetal., 2018)。总体而言,这些侏罗纪的岩浆岩沿班公湖-怒江缝合带呈近东西向带状分布,它们形成时代一致,并具有相似的岩石组合和地球化学特征。因此,它们的形成可能具有相似的地球动力学背景。
佳琼地区高镁安山岩和闪长岩的形成时代一致,并且具有相似的地球化学特征和锆石Hf同位素组成。所有样品均具有钾钙碱性火山岩的特征,轻重稀土分异明显,富集LREE和LILE,亏损HFSE(图6、图7),这与典型岛弧岩浆岩的特征相一致,是大洋俯冲消减背景下的产物(Kelemenetal., 2007)。此外,安山岩和闪长岩均显示出高镁安山质岩石的特征,在Mg#-元素图解上表现出成分的连续变化(图5)。这些特征表明安山岩和闪长岩可能源自相似的源区,具有相同的成因机制,且均与班公湖-怒江中特提斯洋的俯冲消减作用有关。
一般而言,与俯冲相关的(高镁)安山质岩石有以下几种形成机制:(1)基性岩浆与壳源岩浆混合(Strecketal., 2007);(2)含水地幔橄榄岩部分熔融(Wood and Turner, 2009);(3)俯冲板片熔体与地幔楔相互反应(Tatsumi, 2001; Wangetal., 2011)。岩浆混合过程中壳源长英质岩浆的注入,会显著降低岩浆的MgO含量和Mg#,同时导致变化较大的锆石Hf同位素组成(通常εHf(t)变化范围>10; Griffinetal., 2002; Shaw and Flood, 2009),这与佳琼高镁安山岩和闪长岩的特征相矛盾。此外,野外也未见安山岩和闪长岩中具有岩浆混合的现象(如基性包体)。因此,岩浆混合模式可以排除。就第二种模式而言,含水地幔楔的部分熔融,产生的岩浆主要为基性和少量中性岩浆,这与研究区附近同期主要出露安山质和长英质岩石的地质事实不符(李小波等, 2015)。另外,含水地幔橄榄岩部分熔融产生的安山岩应继承源区亏损的同位素特征,这与佳琼安山质岩石具有明显负的锆石εHf(t)值的特征不符(图4)。因此,含水地幔橄榄岩的部分熔融模式也不足以形成研究区内的高镁安山质岩石。
俯冲板片熔体与地幔楔相互反应可能是形成佳琼高镁安山岩和闪长岩的主要机制。高镁安山岩和闪长岩样品均显示出高Y和低Sr的特征,明显区别于埃达克质岩石,与单纯俯冲洋壳熔融产生的熔体特征相矛盾(Defant and Drummond, 1990; Castillo, 2012)。安山岩和闪长岩样品具有较高的(La/Sm)N和Th含量,显示出明显俯冲沉积物组分加入的趋势(图8; Plank and Langmuir, 1998; Kelemenetal., 2007)。此外,明显富集的锆石Hf同位素组成,也进一步支持其岩浆源区加入了壳源组分(俯冲沉积物)。以上这些特征表明佳琼地区高镁安山岩和闪长岩的岩浆可能主要源于一个俯冲沉积物为主的源区,这与部分安山质岩石出露在俯冲增生杂岩之中的地质事实相吻合。在板片俯冲过程中,俯冲沉积物发生部分熔融,产生的熔体和地幔相互作用可能是产生这套安山质岩石的主要过程。但是,这套岩浆岩地球化学特征又有别于典型的赞岐岩,区内还同时发育更高SiO2含量的酸性火山岩(李小波等, 2015),暗示俯冲沉积物熔体可能与地幔楔并未达到平衡(Tatsumi, 2001, 2006)。
图8 西藏班戈佳琼高镁安山岩和闪长岩Ba/Th-(La/Sm)N (a,据Labanieh et al., 2012)和 Th/La-Th (b,据Plank and Langmuir, 1998)图解 深海和全球俯冲沉积物(GLOSS)数据据Plank and Langmuir (1998)Fig.8 Ba/Th vs. (La/Sm)N (a, after Labanieh et al., 2012) and Th/La vs. Th (b, after Plank and Langmuir, 1998) diagrams of the Jiaqiong high-Mg andesite and diorite in the Bange County, Tibet
岛弧岩浆作用是大洋板片俯冲最直接的记录,对于深入理解大洋俯冲消减过程具有重要的科学意义(Stern, 2002)。佳琼地区中晚侏罗世高镁安山岩和闪长岩具有典型的岛弧岩浆岩特征,它们的形成与大洋板片俯冲消减作用有关。安山岩和闪长岩与蛇绿岩和弧前增生杂岩(木嘎岗日群、接奴群)共生,并且局部见闪长岩侵入于蛇绿岩及木嘎岗日群之中,暗示它们产出于靠近海沟的大陆边缘环境(Tatsumi, 2006)。本项研究高镁安山岩和闪长岩具有高Y和低Sr/Y的特征,且研究区内也未有同期埃达克质岩石的报道,指示岩浆应源自浅部源区,并未达到石榴石相,即熔融发生在俯冲带浅部异常高热的环境(Tatsumi, 2001, 2006; 唐功建和王强, 2010),这与达如错东部高镁安山岩的研究结果相一致(Zengetal., 2016b)。海沟边缘浅部高热的岩浆形成,一般对应两种构造模式:洋脊俯冲或者初始俯冲(DeLongetal., 1979; Sunetal., 2010; Hall, 2012)。洋脊俯冲一般发生于大洋演化的末期,常伴随着埃达克岩、MORB-OIB类岩石和其他高温长英质岩石的产出(Sunetal., 2010; Windley and Xiao, 2018)。此外,洋脊俯冲过程中常伴随着软流圈物质的上涌,而形成具有亏损同位素特征的岩石(Lietal., 2016)。这些特征与佳琼地区的高镁安山岩和闪长岩的特征不符,也与安多微陆块及邻区已报道的近同时代岩浆岩的类型和特征不一致(刘敏等, 2011; Zengetal., 2016b; 李小波等, 2017)。另外,研究区以南的北拉-拉弄和永珠-纳木错蛇绿岩主要形成于中晚侏罗世(170~150Ma)(Zhongetal., 2015; Tangetal., 2018a; Zengetal., 2018),也从侧面表明大洋中脊在~165Ma的时候尚在扩张。因此,佳琼地区165~161Ma的高镁安山质岩石很可能是大洋板块初始俯冲的产物(Zengetal., 2016b)。
图9 西藏班戈佳琼地区侏罗纪岛弧岩浆形成的构造模式简图Fig.9 Tectonic model for the formation of Jurassic arc magmatic rocks in Jiaqiong area in the Bange County, Tibet
已有研究资料显示,东巧-安多蛇绿岩具有SSZ型蛇绿岩的特征,时代为190~180Ma,它们的形成与班公湖-怒江中特提斯洋洋盆的北侧分支北向俯冲消减有关(Liuetal., 2016; Wangetal., 2016)。一般认为它们在180~170Ma伴随着安多微陆块拼贴到羌塘南缘而就位(Zhouetal., 1997; Guynnetal., 2006, 2013; Zhangetal., 2014)。北拉-拉弄蛇绿岩发育一套MORB-IAT-玻安质岩石组合,表现出弧前蛇绿岩的特征(Dilek and Furnes, 2014),主要形成于172~148Ma的弧前环境(徐力峰等, 2010; Zhongetal., 2017; Tangetal., 2018a)。这与佳琼地区以及安多微陆块中的侏罗纪岛弧型岩浆作用的时代和构造背景基本吻合。据此我们认为佳琼地区165~161Ma高镁安山岩和闪长岩可能形成于北拉-拉弄分支洋盆北向初始俯冲背景。这一初始俯冲作用可能与同时期(或稍早)安多微陆块拼贴到羌塘南缘所导致的俯冲跃迁有关(图9; Stern, 2004; Stern and Gerya, 2018)。此外,佳琼地区和安多微陆块内部的侏罗纪到早白垩世岩浆作用总体表现出相似的同位素特征,它们均具有较老的锆石Hf模式年龄(1.4~1.8Ga),反应了其岩浆来源于相似的古老地壳基底物质(刘敏等, 2011; 唐跃等, 2015; Zengetal., 2016b; Huetal., 2017; Yanetal., 2016)。因此,尽管佳琼地区及其邻区主要被中晚侏罗-早白垩世沉积地层所覆盖,它可能也属于安多微陆块西延部分。
佳琼地区高镁安山质岩石为进一步约束班公湖-怒江中特提斯洋的演化提供了新的证据。已有研究显示,中特提斯洋在晚三叠世之前就已经打开(Yin and Harrison, 2000; Zhuetal., 2013; Zengetal., 2016a; Fanetal., 2018),安多微陆块则作为独立的块体位于该大洋之中(Guynnetal., 2006; Zhangetal., 2014)。东巧-安多蛇绿岩亚带早侏罗世(190~180Ma)SSZ蛇绿岩的存在,指示中特提斯洋北侧分支洋盆此时已开始向北俯冲消减(Liuetal., 2016; Wangetal., 2016),而南侧的北拉-拉弄分支洋盆仍在持续扩张(图9)。早侏罗世晚期,进一步的俯冲消减以及安多微陆块和南羌塘地块的拼合,导致东巧-安多分支洋盆关闭,从而形成安多微陆块内高压变质岩(Guynnetal., 2006; Zhangetal., 2014)。与此同时,北侧分支洋盆的闭合以及陆陆碰撞导致的俯冲跃迁,在南侧的北拉-拉弄形成新的北向俯冲,并在此基础上逐步形成了安多微陆块内广泛分布的中晚侏罗世岛弧岩浆岩(图9)。值得注意的是,班公湖-怒江缝合带西段羌塘南缘地区所报道的岛弧岩浆岩时代也主要起始于中侏罗世(~170Ma)(Lietal., 2016, 2018b)。同时,班公湖-怒江缝合带自班公湖-改则,向东到北拉-拉弄,再到丁青地区的蛇绿岩,主体形成于一个非常窄的时间范围,主要集中于175~160Ma(史仁灯等, 2007; Wangetal., 2016; Huangetal., 2017; Zhongetal., 2017; Tangetal., 2018a, b)。这些蛇绿岩均显示出明显的SSZ亲缘性,指示了与俯冲相关的构造环境。因此,岛弧岩浆岩和蛇绿岩共同指示整个中特提斯洋的北向俯冲时间可能起始于中侏罗世,并随着晚侏罗-早白垩世拉萨和南羌塘地块逐步碰撞而结束(Zhuetal., 2016; Fanetal., 2018)。
(1)佳琼地区安山岩和闪长岩形成于中晚侏罗世(165~161Ma);
(2)安山岩和闪长岩均显示出高镁安山质岩石的特征,是俯冲过程中俯冲板片上覆沉积物部分熔融的熔体与地幔楔交代的产物;
(3)佳琼及邻区中晚侏罗世高镁安山质岩石是中特提斯洋北拉-拉弄分支洋盆北向初始俯冲的产物,这一俯冲过程可能与安多微陆块与南羌塘地块碰撞导致的俯冲南向跃迁有关。
致谢锆石阴极发光图片拍摄得到了中国地质科学院地质研究所施斌的帮助;锆石U-Pb定年得到了中国地质科学院矿产资源研究所侯可军老师以及北京科荟测试技术有限公司肇创的协助;中国科学院地质与地球物理研究所杨岳衡研究员、张维麒博士等在锆石Hf同位素分析实验中提供了帮助。中国地质科学院地质研究所刘建峰研究员和李舢副研究员详细审阅了本文并提出宝贵修改意见。在此一并表示感谢。
谨以此文祝贺肖序常院士90寿辰,感谢先生一直以来的指导与帮助,祝先生健康长寿。