夏桂敏,刘光辉,沙 炎,赵 清,张 丰,陈涛涛
斜发沸石对干湿交替稻田土壤速效钾和产量的影响
夏桂敏,刘光辉,沙 炎,赵 清,张 丰,陈涛涛※
(沈阳农业大学水利学院,沈阳 110866)
为了进一步探究斜发沸石在干湿交替稻田中的应用潜力,设置不同灌溉模式(淹灌和干湿交替灌溉)和不同斜发沸石用量(0、5、10 t/hm2)的大田裂区试验,对2017-2018年稻田土壤速效钾动态变化和产量进行了研究。结果表明:稻田增施斜发沸石显著提高了水稻产量,在10 t/hm2水平下产量最高,增产率达8.7%~22.3%。斜发沸石对稻田表层土壤速效钾含量和植株地上部钾素积累的提高有显著正效应,干湿交替灌溉显著提高了各生育期植株地上部钾素积累量,提高幅度分别为11.81%~21.42%(2017年)、9.69%~23.79%(2018年)。通径分析表明,斜发沸石增产是因为其显著增加了分蘖肥期和穂肥期土壤速效钾含量,提高了抽穗开花期和黄熟期地上部钾素积累。研究可为揭示干湿交替灌溉下提高钾肥利用效率的应用潜力,并一定程度上缓解稻田缺钾的局面提供依据。
沸石;钾;灌溉;水稻;干湿交替;产量
钾素作为植物生长发育的必要养分,在植物生长过程中起着至关重要的作用。中国土壤全钾质量分数一般在16.6 g/kg左右,但能被植物直接吸收利用的速效钾质量分数一般不超过全钾的2%[1]。为了实现水稻高产,人们常采用高产作物品种或增加化肥施用量,导致土壤钾素流失量逐年增加,土壤供钾量显著降低,缺钾农田面积逐渐增大。因此,发展与研究新的农业生产策略来提高农田钾量和保钾能力是当前迫切的需求。
水稻是中国主要的粮食作物,65%的人口将米饭作为主食[2-3],而其耗水量占全国总用水量的50%左右,占农业总用水量的65%以上[4],同时水稻水分利用效率也极低,仅为40%左右[5]。为了提高稻田水分利用效率,国内外提出了大量的水稻节水灌溉模式,如干湿交替灌溉[6]、能量调控灌溉[7]、控制灌溉[8]等。其中,干湿交替灌溉是应用最广的一种灌溉模式,在世界各地已得到普遍应用和推广。干湿交替灌溉技术可显著降低水资源消耗、提高或维持水稻产量,进而提高水分生产率。但在干湿交替条件下,稻田土壤始终处于有氧-厌氧快速交替的状态,导致稻田土壤速效钾含量显著降低并阻碍缓效钾释放[9-10]。因此,应用干湿交替灌溉在实现水稻节水增产(或稳产)的同时,有必要研究土壤中钾养分的动态变化,探究其在土壤中的变化规律,以充分发挥稻田土壤供钾潜力、有效提高钾肥利用率。
斜发沸石作为多孔矿物质,因其内部具有较高阳离子交换位点和比表面积,而具有保水、阳离子交换及吸附选择性等特性[11-12]。一般沸石全钾质量分数在3%~5%之间,且可溶性钾占了全钾的一半,可为水稻提供丰富的钾源[13-14]。斜发沸石内部丰富交换位点的存在,决定了其极强阳离子交换能力[15-16]。施入钾肥后,土壤钾离子急剧上升,斜发沸石内部丰富交换位点处的阳离子(如Ca2+、Mg2+和Na+等)迅速与钾离子交换;而随着水稻对土壤养分的不断吸收,土壤中离子浓度不断降低,通过“吸附”和“释放”的双重作用,延长肥效[17],而且缓释效果在干湿交替稻田下效果更为明显[18]。近年来,许多学者对斜发沸石在干湿交替稻田中应用潜力进行了较为深入的研究,分别揭示了其在干湿交替稻田中可显著提高水稻产量、水氮利用率、土壤持水特性和保肥能力,降低氨挥发和氮素淋失等氮素流失,且对水稻品质没有明显的影响[19-22]。然而,其对土壤速效钾含量变化及植株对钾素吸收利用的影响如何尚不清楚。因此,本文拟通过向干湿交替灌溉稻田增施斜发沸石,明晰斜发沸石对常规淹水和干湿交替稻田土壤速效钾含量的动态调节和产量的影响及其差异,揭示干湿交替灌溉下提高钾肥利用效率的应用潜力,并一定程度上缓解稻田缺钾的局面。
试验于2017-2018年在沈阳农业大学农学院教学试验基地进行(123°33'E,41°49'N)。基地土质为棕壤土,有机质23.17 g/kg,速效磷24.27 mg/kg,速效钾169.98 mg/kg,全氮0.89 g/kg,土壤pH值为5.61。2 a间水稻生育期内的逐日降水和平均温度如图1所示。
图1 水稻生长季日平均气温与降雨量
供试品种为“沈稻529”,分别于2017年5月28日和2018年5月29日插秧,行距为30 cm,株距为14 cm,每穴插3株,全生育期分别为131和136 d。本试验氮、磷、钾肥分别采用尿素、磷酸二铵和硫酸钾。氮肥(N,150 kg/hm2)以5:4:1的比例分别于移栽前1天、分蘖始期及穗分化始期施入土壤;磷肥(P2O5,112.5 kg/hm2)于移栽前1天全部施入土壤;钾肥(K2O,150 kg/hm2)以3:2的比例分别于移栽前1天和穗分化始期施入土壤。供试沸石为斜发沸石(粒径为0.18~0.38 mm),其阳离子交换量(cation exchange capacity,CEC)为135~200 cmol/kg,比表面积为670 m2/g,主要成分如下:SiO265.56%、Al2O310.62%、H2O 8.16%、K2O 2.87%、CaO 2.59%。
本试验采用裂区设计,包括灌溉模式和沸石量2因素,主区为淹灌(ICF)和干湿交替灌溉(IAWD)2个水平;子区斜发沸石添加量为0(Z0)、5 t/hm2(Z5)和10 t/hm2(Z10)3个水平。本试验设置6个处理,3次重复,共18个小区,南北方向布置。为了探索沸石增产保肥的后效性,2018年重复 2017年试验,但不施沸石,且2018年各试验小区的布局和2017年完全一致。主区由80 cm宽的土埂完全隔开,通过埋设塑料池埂(40 cm高)将各小区隔开,将池埂埋入30 cm土层深度,以防止水分和养分的侧向横流。每个小区面积为12 m2且肥处理一致。由水银负压计(南京土壤所研制)和自制水位计观测土壤水势与田间水位。淹灌和干湿交替灌溉处理下返青期水层深度均为1~3 cm,之后分别采用不同的控水标准,淹灌处理其余生育期水层深度均为3~7 cm,直至落干;干湿交替灌溉处理控水标准参考陈涛涛等(2016年)。稻田病、虫、草等管理均参照当地标准。
1.4.1 水稻产量与钾素吸收量
收获前,于各小区中间1 m×1 m范围内随机挑选2穴稻株,齐地面剪下,按茎、叶、穗分解后分别装入牛皮纸袋中,于70 ℃烘干至恒质量,并称质量。之后,对烘干样品进行粉碎,并采用浓H2SO4-H2O2法消煮,采用火焰光度计(M410,英国Sherwood公司产)测定各部分钾含量,各部分干质量与钾素含量乘积之和即为植株地上部钾素积累量。各小区单打单收,以测定水稻产量。
1.4.2 稻田土壤速效钾含量
翻地前与秋收后土壤按0~10 cm和35~45 cm 2个土层取样。生育期内土样均采集于表层土壤(0~10 cm),返青期到拔节孕穗期每隔1周取1次土样,拔节孕穗期到黄熟期2周取1次土样。每次施肥前后加测1次。采集的土样风干后粉碎至粉状用于土壤速效钾的测定。土壤速效钾用1 mol/L中性NH4OAc浸提-火焰光度计法对土壤速效钾进行测定。
2 a数据分别采用多层次的裂区试验设计模型单独进行方差分析,使用R软件实现。该模型中灌溉模式(I)和沸石用量(Z)为固定因子,区组(B)为随机因子。主区和子区的误差项分别为:B×I和B×I×Z。采用Tukey’s HSD方法对主因子和交互因子进行显著性检测,显著性水平为0.05。
2 a试验结果一致表明斜发沸石(Z)对水稻产量均有显著影响,但灌溉模式的主效应及交互效应(I×Z)不显著(表1)。与无沸石相比,2 a间水稻产量均随沸石施用量的增多有提高的趋势,在沸石施用量为10 t/hm2时均达到了显著性水平(<0.05),提高幅度为8.7%~22.3%(表2)。干湿交替稻田增施10 t/hm2斜发沸石的增产效果最为明显,2 a较常规处理(ICFZ0)增产12.5%~27.2%(图2)。产量构成因子分析结果表明,斜发沸石显著增产主要由于其显著影响了单位面积的有效穗数(表1),与Z0相比,稻田增施10 t/hm2斜发沸石, 2 a可显著提高单位面积有效穗数17.56%~22.39%(表2)。
表1 水稻产量及产量构成的方差分析
注:I:灌溉模式;Z:斜发沸石;“*”表示在<0.05 水平下影响显著,“**” 表示在<0.01水平下影响极显著。
Note: I: irrigation regimes; Z: zeolite application rates; “*”indicates significant effect at<0.05 level, “**”, extremely significant at<0.01.
表2 各主因子不同水平下水稻产量及产量构成指标多重均值对比(Tukey’s HSD test)
注:ICF:淹水灌溉;IAWD:干湿交替灌溉;Z0:不施沸石;Z5:5 t·hm-2沸石;Z10:10 t·hm-2沸石,同一列不同字母表示具有显著的差异,下同。
Note: ICF: continuously flooded irrigation; IAWD: alternate wetting and drying irrigation; Z0: no zeolite; Z5: 5 t·hm-2zeolite; Z10: 10 t·hm-2zeolite, Different lowercase letters in columns are significantly different at 0.05 probability level, the same below.
图2 不同灌溉模式和沸石用量对水稻产量的影响
灌溉模式和斜发沸石对水稻各生育期地上部干物质量的影响如图3所示。2 a试验结果表明,灌溉模式和斜发沸石对各生育期干物质量均有显著影响,交互效应在拔节孕穗期和抽穗开花期有显著影响。分析表明(图3),2种灌溉模式下,水稻各生育期地上部干物质量均随沸石施用量的增多而有提高的趋势,在沸石施用量为10 t/hm2时显著高于不添加沸石处理(<0.05)。10 t/hm2斜发沸石较之无沸石处理,地上部干物质量2 a平均值在分蘖后期、拔节孕穗期、抽穗开花期、乳熟期、黄熟期分别显著提高44.52%、34.12%、20.72%、17.10%和18.13%(淹水灌溉),31.29%、35.29%、39.03%、20.88%和22.51%(干湿交替灌溉)。由此可见,斜发沸石可提高水稻全生育期地上部干物质质量。
灌溉模式和斜发沸石对水稻各生育期钾素积累量的影响如表3所示。2 a试验结果表明,灌溉模式和斜发沸石对植株钾素积累量均有显著影响。由表可知,干湿交替灌溉显著提高了各生育期植株地上部钾素积累量,提高幅度分别为11.81%~21.42%(2017)、9.69%~23.79%(2018)。与无沸石相比,2 a间不同生育期地上部钾素积累量均随沸石施用量的增多而有提高的趋势,在沸石施用量为10 t/hm2时均达到了显著性水平(<0.05),各生育期地上部钾素积累量提高幅度分别为24.67%、14.61%、31.48%、25.76%及35.84%。交互分析表明(图4),干湿交替稻田增施10 t/hm2斜发沸石对于地上部钾素积累量提升效果最为明显,并且达到显著性水平(<0.05),2 a结论完全一致。由此可见,应用干湿交替灌溉和斜发沸石均可提高水稻全生育期地上部钾素积累量。
注:T,分蘖后期;J,拔节孕穗期; FH,抽穗开花期; M,乳熟期;D,黄熟期,下同。
表3 各主因子不同水平下水稻各生育期地上部分钾素积累的均值比较
图4 不同灌溉模式和沸石用量对地上部分钾素积累量的影响
不同灌溉模式和斜发沸石水平下稻田全生育期土壤速效钾含量动态变化曲线如图5所示。2017年和2018年,土壤速效钾含量动态变化曲线基本一致,均出现3次峰值和2次谷值。第1次、第2次峰值分别出现在施分蘖肥后、施穗肥后的第4天;第3次峰值出现在生殖生长阶段,植株吸收养分的速度大于施穗肥后K+浓度上升速度,随着生育进程的递进,植株吸收养分的速度又小于K+浓度上升速度。2种灌溉模式下,土壤速效钾含量均随着沸石施用量的增加而增加,并达到显著性水平(<0.05),这种规律从水稻返青一直持续到水稻黄熟收获,持续了整个水稻生育期。在干湿交替灌溉下施用斜发沸石,土壤速效钾含量始终高于淹水灌溉(表4)。这表明斜发沸石在干湿交替灌溉下提高速效钾含量的效果更为明显,且2 a结论完全一致。
各处理不同施肥阶段土壤速效钾平均含量如表4所示。2种灌溉模式下,3个施肥阶段土壤速效钾平均含量均随着沸石施用量的增加呈现增加趋势。交互效应分析表明,2 a试验期间,斜发沸石在干湿交替灌溉下,对于不同施肥阶段土壤速效钾平均含量的提升更为明显。如在分蘖-穗肥时期,ICFZ10处理土壤速效钾平均含量较ICFZ0高15.86%、55.73%(2017)和31.96%、62.61%(2018);IAWDZ5、IAWDZ10处理土壤速效钾平均含量较IAWDZ0高44.01%、83.65%(2017)和50.18%、91.35%(2018)。斜发沸石在不同施肥阶段对土壤速效钾平均含量增效也有所不同。在速效钾含量高时(基肥-分蘖肥)最为明显,在速效钾含量低时(穗肥-收获)其增效也有所降低。
为了明晰水稻产量同阶段土壤速效钾平均含量和地上部钾素积累量的响应关系,进一步揭示斜发沸石增产机理,分别对5个生育期地上部钾素积累量与水稻产量以及3个施肥阶段土壤速效钾平均含量与水稻产量进行了通径分析(以2 a均值作分析),分析结果如表5所示。由表5可知,抽穗开花期和黄熟期的地上部钾素积累量对产量贡献最大,其贡献率所占比例分别为:55%(抽穗开花期)、40%(黄熟期)。而在产量贡献率最大的2个生育期,斜发沸石对地上部钾素积累的作用极为明显,增施10 t/hm2斜发沸石,分别提高地上部钾素积累31.5%、35.8%(表3)。由此可知,斜发沸石增产是由于其显著增加了水稻抽穗开花期与黄熟期地上部钾素积累。乳熟期和分蘖后期对产量的负贡献率可能是由于基肥和穗肥后,土壤钾肥营养充足,植株地上部分钾素积累并不会对产量产生直接正效应(图5)。同样由表5可知,分蘖肥-穗肥、穗肥-收获期2阶段的土壤速效钾平均含量对产量贡献率分别为40%、39%。在分蘖-穗肥、穗肥-收获施肥阶段中沸石对于不同灌溉模式下土壤速效钾含量的提高极为显著。可见,斜发沸石能够显著提高分蘖-穗肥、穗肥-收获期2阶段土壤速效钾含量是其使水稻增产的另一个原因。由此可知,斜发沸石显著提高了K+敏感时期土壤速效钾含量,增加植株关键时期的地上部分钾素积累量,最终实现水稻增产。
图5 不同灌溉模式和沸石用量对土壤速效钾含量动态变化的影响
表4 不同处理对稻田阶段土壤速效钾平均含量的影响
表5 不同生育期植株钾积累和阶段土壤速效钾平均含量对产量的通径分析
注:18分别表示分蘖后期、拔节孕穗期、抽穗开花期、乳熟期、黄熟期地上部分钾素积累量、基肥-分蘖肥、分蘖肥-穗肥、穗肥-收获阶段土壤速效钾平均含量。
Note:18respectively indicates the above-ground K accumulation of plants in later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage, the soil available potassium content in base-tillering fertilizer, tillering-spike fertilizer, spike fertilizer-harvest.
钾素作为植物生长发育的必需元素,在作物增产方面起着关键性作用[23-24]。钾素充足有利于作物各生长阶段器官的生长,尤其是对水稻更为重要,而稻田植株地上部钾素积累量是产量形成的表现[25]。相关研究表明,干湿交替灌溉可促进水稻深层根系的生长,进而提高根系吸收水分和养分的能力,改善水稻植株的生长发育[26]。本研究表明,干湿交替灌溉显著提高了水稻各生育期地上部分钾素积累量,与其结论一致。水分状况影响植株对养分的吸收利用,进而影响水稻的生长发育和产量的形成[27],斜发沸石因具有较高的比表面积,能够显著改善土壤的保水能力和水分状况[20],不仅能为作物生长提供充足的水分,还能缓解干旱胁迫对产量的负效应[28];另外,斜发沸石极强的阳离子交换能力,还能提高稻田保肥能力和土壤中可交换钾的数量,进而提高稻田土壤钾素的有效性,为作物生长提供良好的营养条件[29-31]。Chen等[19,21,29,32]研究表明,斜发沸石显著提高了水稻植株地上部氮积累量和增加了单位面积的有效穗数,从而使水稻增产4.7%~16.8%。本研究表明,稻田增施斜发沸石(5~10 t/hm2)可提高产量,提高水稻各生育期植株地上部钾素积累,尤其是10 t/hm2的斜发沸石同干湿交替灌溉模式结合效果最好,较之淹水无沸石处理,可显著提高钾素积累量。斜发沸石显著提高了K+敏感时期土壤速效钾含量,增加植株关键时期的地上部分钾素积累量,从而提高水稻产量。
是所需的重要元素,限制着植物的生长发育,而速效钾更是一个衡量土壤肥力的重要指标[33]。干湿交替灌溉不仅能够影响植物对养分的吸收,同时还能够影响土壤速效钾含量,从而间接或直接的影响作物的生长发育。李梦寻等[9]研究表明,干湿交替灌溉能够显著降低速效钾的含量,土壤中的交换性钾进入黏土矿物的晶体层之间,从而转换成非交换型钾,最终降低钾的有效性。而丛日环等[34]研究表明,在土壤速效钾水平不高的条件下,频繁的干湿交替会使土壤发生释钾现象,导致土壤速效钾含量增加。本研究表明,2 a试验下,干湿交替灌溉降低了稻田土壤速效钾含量,在水稻生育前期,土壤速效钾含量较高。同时,在前期干湿交替次数较少,此时干湿交替灌溉会降低土壤速效钾含量,之后随着生育进程的递进,土壤速效钾逐渐被植株吸收,速效钾含量降低,之后频繁的干湿交替灌溉又会促进土壤释钾,导致土壤速效钾含量升高,使之接近淹水灌溉水平,但始终没有超过,与其结论一致。这是因为当土壤水分含量较低时,土壤溶液中的K+浓度就会增加,矿物层之间的空隙就会收缩或闭合,K+就会被束缚无法释放出来导致速效钾含量降低,在湿润条件下时,土壤溶液中的K+浓度就会降低,被固定在土壤中的钾素就会从新被释放出来[35]。在土壤中添加天然沸石有助于保持土壤养分和改善土壤质地。它影响着土壤中许多用于植物吸收利用的营养元素,如N、K、Ca和Mg等[16]。周恩湘等[36]研究表明,土壤添加沸石能够提高土壤速效钾含量,较之无沸石处理,可提高盐化土壤速效钾含量5%~25%。本研究表明,稻田增施沸石能够显著增加全生育期土壤中速效钾含量,尤其是斜发沸石同干湿交替灌溉模式结合效果更好,两者表现出协同作用。这是因为在沸石中含有大量的可溶性钾溶于水中[13],使得速效钾含量大幅度提升,在后期效果也非常显著,并且在2018年具有相同的试验结果,可见斜发沸石具有后效性[37]。斜发沸石增产效应是因为斜发沸石提高了K+敏感时期的土壤速效钾含量。
本文以淹灌为对照,研究斜发沸石对干湿交替稻田土壤速效钾动态变化和产量的影响。主要结论如下:
1)稻田增施斜发沸石可显著提高水稻产量,在10 t/hm2水平下产量最高,增产率达22.3%,其增产原因是斜发沸石提高了全生育土壤速效钾含量,促进植株地上部分干物质和钾素积累量。从产量构成上分析是斜发沸石显著增加了单位面积的有效穗数。
2)淹灌和干湿交替稻田增施斜发沸石均显著提高土壤速效钾含量,可提高基肥期、分蘖肥期和穗肥期表层土壤速效钾含量,且在干湿交替灌溉下提升效果更为明显。
3)斜发沸石在淹灌和干湿交替灌溉下对土壤钾肥、干物质、钾素积累和产量等多重正效应至少可持续2 a。当然,稻田斜发沸石增产不能完全归结于其对提高表层土壤速效钾含量和地上部分钾素积累提升的正效应,还与斜发沸石提高土壤持水性能及对土壤氮含量的影响等有一定的关系。有关斜发沸石对土壤水分和多种溶质运移的综合调控机制仍需进一步研究。
[1] 占丽平,李小坤,鲁剑巍,等. 土壤钾素运移的影响因素研究进展[J]. 土壤,2012,44(4):548-553.
Zhan Liping, Li Xiaokun, Lu Jianwei, et al. Research advances on influence factors of soil potassium movement[J]. Soil, 2012, 44(4): 548-553. (in Chinese with English abstract)
[2] Zhou Qun, Ju Chengxin, Wang Zhiqin, et al. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation[J]. Journal of Integrative Agriculture, 2017, 16(5): 1028-1043.
[3] 朱德峰,张玉屏,陈惠哲,等. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学,2015,48(17):3404-3414.
Zhu Defeng, Zhang Yuping, Chen Huizhe, et al. Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract)
[4] 姚林,郑华斌,刘建霞,等. 中国水稻节水灌溉技术的现状及发展趋势[J]. 生态学杂志,2014,33(5):1381-1387.
Yao Lin, Zheng Huabin, Liu Jianxia, et al. Current situation and prospect of rice water-saving irrigation technology in China[J]. Chinese Journal of Ecology, 2014, 33(5): 1381-1387. (in Chinese with English abstract)
[5] 陈琳. 黑土区水稻调亏灌溉模式的研究[D]. 哈尔滨:东北农业大学,2010.
Chen Lin. The Studies on Effects of Regulated Deficit Irrigation of Paddy Rice in The Phaeozem[D]. Harbin: Northeast Agricultural University, 2010. (in Chinese with English abstract)
[6] Norton G J, Shafaei M, Travis A J, et al. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality[J]. Field Crops Research, 2017, 205: 1-13.
[7] 迟道才,王殿武. 北方水稻节水理论与实践[M]. 北京:中国农业科学技术出版社,2003.
[8] 彭世彰,徐俊增,黄乾,等. 水稻控制灌溉模式及其环境多功能性[J]. 沈阳农业大学学报,2004,35(6):443-445.
Peng Shizhang, Xu Junzeng, Huang Qian, et al. Controlled irrigation of paddy rice and environmental multifunctionality[J]. Journal of Shenyang Agricultural University, 2004, 35(6): 443-445. (in Chinese with English abstract)
[9] 李梦寻,王冬梅,任远,等. 不同干湿交替频率对土壤速效养分、水溶性有机碳的影响[J]. 生态学报,2018,38(5):1542-1549.
Li Mengxun, Wang Dongmei, Ren Yuan, et al. Influence of different drying-rewetting frequencies on available soil nutrients and DOC[J]. Acta Ecologica Sinica, 2018, 38(5): 1542-1549. (in Chinese with English abstract)
[10] 朱咏莉,刘军,王益权,等. 干湿交替过程对黄土高原几种主要土壤钾有效性的影响[J]. 土壤通报,2002,33(6):435-437.
Zhu Yongli, Liu Jun, Wang Yiquan, et al. Effect of alternation of drying and wetting on K fixation capacity of soils in loess plateau[J]. Chinese Journal of Soil Science, 2002, 33(6): 435-437. (in Chinese with English abstract)
[11] Azarpour E, Motamed M K, Moraditochaee M, et al. Effects of zeolite application and nitrogen fertilization on yield components of cowpea (L.)[J]. World Applied Sciences Journal, 2011, 14(5): 687-692.
[12] Ozbahce A, Tari A F, Gönülal E, et al. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress[J]. Archives of Agronomy and Soil Science, 2015, 61(5): 615-626.
[13] Piñón-Villarreal A R, Bawazir A S, Shukla M K, et al. Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(9): 755-765.
[14] Andronikashvili T G, Urushadze T F, Eprikashvili L G, et al. Use of natural zeolites in plant growing-transition to biological agriculture[J]. Bull. of the Georgian National Academy of Science, 2007, 175(4): 112-117.
[15] Sepaskhah A R , Yousefi F. Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions[J]. Australian Journal of Soil Research, 2007, 45(5): 368.
[16] Li J, Wee C, Sohn B. Effect of ammonium-and potassium-loaded zeolite on kale (Brassica alboglabra) growth and soil property[J]. American Journal of Plant Sciences, 2013, 4(10): 1976.
[17] 刘爱平,冯启明,王维清,等. 斜发沸石对钾肥的吸附性能及缓释效果[J]. 非金属矿,2011,34(3):58-60.
Liu Aiping, Feng Qiming, Wang Weiqing, et al. Adsorption property and slow-releasing effect of clinoptilotite to potash fertilizer[J]. Non-Metallic Mines, 2011, 34(3): 58-60. (in Chinese with English abstract)
[18] 化全县,李见云,周健民. 天然沸石对磷、钾在红壤中迁移影响的室内模拟研究[J]. 农业工程学报,2006,22(9):261-263.
Hua Quanxian, Li Jianyun, Zhou Jianmin. Laboratory simulation of effects of native clinoptilolite on phosphorus and potassium mobilization in red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(9): 261-263. (in Chinese with English abstract)
[19] Chen T, Wilson L T, Liang Q, et al. Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice[J]. Archives of Agronomy and Soil Science, 2017, 63(9): 1210-1226.
[20] 陈涛涛,吴奇,郑俊林,等. 基于斜发沸石的水氮耦合效应对水稻产量影响研究[J]. 灌溉排水学报,2014,33(4):71-76.
Chen Taotao, Wu Qi, Zheng Junlin, et al. Effect of water and nitrogen coupling on rice yield based on clinoptilolite[J]. Journal of Irrigation and Drainage, 2014, 33(4): 71-76. (in Chinese with English abstract)
[21] 陈涛涛,孙德环,张旭东,等. 干湿交替灌溉下水氮耦合对沸石处理稻田产量和水氮利用的影响[J]. 农业工程学报,2016,32(22):154-162.
Chen Taotao, Sun Dehuan, Zhang Xudong, et al. Impact of water-nitrogen coupling on grain yield, water and nitrogen usage in zeolite-amended paddy field under alternate wetting and drying irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 154-162. (in Chinese with English abstract)
[22] Wu Qi, Xia Guimin, Chen Taotao, et al. Effects of nitrogen and zeolite on rice grain yield, water and nitrogen use, and soil total nitrogen in coastal region of northeast china[J]. Communications in Soil Science and Plant Analysis, 2016, 47(18): 2103-2114.
[23] 侯云鹏,张磊,孔丽丽. 施钾对不同肥力土壤玉米钾素吸收、分配及产量的影响[J]. 中国生态农业学报,2013,21(11):1333-1339.
Hou Yunpeng, Zhang Lei, Kong Lili. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333-1339. (in Chinese with English abstract)
[24] 张洋洋,鲁剑巍,王友珠. 钾肥施用方式对直播和移栽水稻产量和钾肥利用效率的影响[J]. 作物杂志,2016(1):110-114.
Zhang Yangyang, Lu Jianwei, Wang Youzhu. Effects of potassium fertilizer application method on yield and potassium apparent efficiency of direct-sowing rice and transplanting rice[J]. Crops, 2016(1): 110-114. (in Chinese with English abstract)
[25] 潘广平. 不同钾素运筹对钾素利用率与水稻产量的影响[J]. 现代化农业,2018(12):15-16.
Pan Guangping. Effects of different potassium operation on potassium utilization rate and rice yield[J]. Modern Agriculture, 2018(12): 15-16. (in Chinese with English abstract)
[26] 褚光,展明飞,朱宽宇,等. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报,2016,42(7):1026-1036.
Chu Guang, Zhan Mingfei, Zhu Kuanyu, et al. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract)
[27] Liu Lijun, Chen Tingting, Wang Zhiqin, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226-235.
[28] Xiubin H, Zhanbin H. Zeolite application for enhancing water infiltration and retention in loess soil[J]. Resources, conservation and recycling, 2001, 34(1): 45-52.
[29] Chen Taotao, Xia Guimin, Wu Qi, et al. The influence of zeolite amendment on yield performance, quality characteristics, and nitrogen use efficiency of paddy rice[J]. Crop Science, 2017, 57(5): 2777-2787.
[30] Zheng Junlin, Chen Taotao, Wu Qi, et al. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress[J]. Agricultural Water Management, 2018, 206: 241-251.
[31] Sun Yidi, Xia Guimin, He Zhenli, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103.
[32] 迟道才,孙一迪,吴奇,等. 肥与沸石对节水稻作产量及氮素吸收利用的影响[J]. 沈阳农业大学学报,2015,46(5): 588-595.
Chi Daocai, Sun Yidi, Wu Qi, et al. Effect of fertilizer and zeolite on rice yield and nitrogen utilization under water saving irrigation[J]. Journal of Shenyang Agricultural University, 2015, 46(5): 588-595. (in Chinese with English abstract)
[33] 从怀军,张展,徐斌,等. 黄土高原沟壑区不同施肥条件下土壤速效钾含量研究[J]. 水土保持研究,2018,25(4):129-133.
Cong Huaijun, Zhang Zhan, Xu Bin, et al. Study on available potassium contents in soils under different fertilization conditions in highland and gully region of the loess plateau[J]. Research of Soil and Water Conservation, 2018, 25(4): 129-133. (in Chinese with English abstract)
[34] 丛日环,李小坤,鲁剑巍. 土壤钾素转化的影响因素及其研究进展[J]. 华中农业大学学报,2007,26(6):907-913.
Cong Rihuan, Li Xiaokun, Lu Jianwei. Advances in research on influence factors of soil potassium transformation[J]. Journal of Huazhong Agricultural University, 2007, 26(6): 907-913. (in Chinese with English abstract)
[35] Wicklander L. Cation and exchange phenomena[J]. Chemistry of the Soil, 1969, 2: 163-205.
[36] 周恩湘,张桂银. Ca—K型斜发沸石对盐化土壤速效钾的影响[J]. 河北农业大学学报,1999(4):10-14.
Zhou Enxiang, Zhang Guiyin. The effect of Ca-K clinoptilolite on available potassium in salinized soil[J]. Journal of Agricultural University of He Bei, 1999(4): 10-14. (in Chinese with English abstract)
[37] 陈涛涛. 斜发沸石对滨海稻田水氮耦合效应的影响研究[D]. 沈阳:沈阳农业大学,2016.
Chen Taotao. Effects of Irrigation, Nitrogen and Zeolite Management on Grain Yield, Water and Nitrogen Utilization in Paddy Field in Coastal China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract)
Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system
Xia Guimin, Liu Guanghui, Sha Yan, Zhao Qing, Zhang Feng, Chen Taotao※
(,,110866)
The impact of zeolite (Z) on the dynamic of soil available potassium in the rice production system remains unknown, especially in the alternate wetting and drying (AWD) irrigation rice production system. To explore the application potential of zeolite in alternate wetting and drying rice system, a 2-year experiment was conducted to determine the effects of Z on grain yield and soil available potassium under different Z application rates and irrigation methods using the split plot design. A Japonica rice (cv. Shen Dao 529) was cultivated in brown loam soil. Treatments included 2 irrigations methods (CF: continuously flooded irrigation, AWD: alternate wetting and drying irrigation) as main plots and 3 zeolite application rates (0, 5, and 10 t/hm2) as sub-plots within each of main plots. The experiment was repeated in 2018 but Z was not applied, and the plots in 2018 experiment were same as 2017 experiment. The results showed that Z application at the rate of 10 t/hm2significantly increased grain yield as compared with no zeolites, in particular Z application at the rate of 10 t/hm2in the AWD rice production system, of which the yield was 8.7%-22.3% higher than the zeolite-free treatment in the CF rice production system. Zeolite had a significant positive effect on the surface soil available potassium content, and above-ground dry matter accumulation as well as the K accumulation of rice plants in the rice field. Z application at the rate of 5-10 t/hm2increased the surface soil available potassium content in the basel fertilizer stage, tiller fertilizer stage and panicle fertilizer stages, above-ground dry matter accumulation in later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, and yellow ripening stage and improved the aboveground K accumulation of rice plant in the later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage. The positive effects of Z observed were even more obvious when applied into the AWD rice production systems relative to the CF one. Compared with the most commonly used treatment (CF and Z-free treatment), the AWD irrigation in combination with 10 t/hm2Z application average increased the surface soil available potassium content in the basal fertilizer stage, tiller fertilizer stage and panicle fertilizer stages, above-ground dry matter accumulation in Jointing-booting stage, heading-flowering stage, milky ripening stage, Yellow ripening stage (except later tillering stage) and improved the aboveground K accumulation of rice plant in the later tillering stage, jointing-booting stage, heading-flowering stage, milky ripening stage, yellow ripening stage by 11.81%-21.42% in 2017 and 9.69%-23.79% in 2018. The rice yield component results revealed the increased yield in Z treatment was mainly caused by increased effective tiller number at harvest, while path analysis of dynamics in average soil available potassium at different fertilization stages and above-ground K accumulation of rice plants at different growth stages further suggested that the increased grain yield in zeolite treatment was mainly due to increase of soil available potassium content in tiller-panicle fertilizer stage and panicle fertilizer-harvest stage caused by increased zeolite, and increased aboveground K accumulation of rice plant in the heading-flowering stage and yellow ripening stage. In addition, these positive residual activities could maintain for at least 2 years after initial application in both the CF and AWD rice production systems.
zeolite; potassium; irrigation; rice; alternate wetting and drying; yield
夏桂敏,刘光辉,沙 炎,赵 清,张 丰,陈涛涛. 斜发沸石对干湿交替稻田土壤速效钾和产量的影响[J]. 农业工程学报,2019,35(18):101-109.doi:10.11975/j.issn.1002-6819.2019.18.013 http://www.tcsae.org
Xia Guimin, Liu Guanghui, Sha Yan, Zhao Qing, Zhang Feng, Chen Taotao. Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 101-109. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.013 http://www.tcsae.org
2019-03-14
2019-08-10
国家自然科学基金(51709173、51679142);辽宁省自然基金(2019-MS-277、20180550819);国家公益性行业(农业)科研专项项目(201303125)
夏桂敏,副教授,博士,主要从事农业与生态节水理论及技术研究。Email:xiagm1229@126.com
陈涛涛,博士,讲师,主要从水肥调控与高效利用研究。Email:taotao-chen@syau.edu.cn
10.11975/j.issn.1002-6819.2019.18.013
S274.3; O614.113
A
1002-6819(2019)-18-0101-09