一种高自由度低复杂度的增强嵌套阵设计方法

2019-10-24 08:53汤亚鸽杨明金强
科技创新与应用 2019年24期

汤亚鸽 杨明 金强

摘  要:近年來,非均匀线性阵列引起了阵列信号处理领域研究者的广泛关注。在阵型设计中的一个关键的问题是,设定传感器放置位置以获得最大自由度和最小互耦效应。文章将嵌套阵列的密集子阵分成若干部分,然后将这些部分重新排列在嵌套阵列的两侧,由此提出了增强嵌套阵列的概念,并且给出了物理阵元位置的四种典型形式,同时针对任意给定的阵元数推导出虚拟传感器的位置。与具有相同阵元数的嵌套阵列相比,文章所提曾广嵌套阵列具有更高的自由度和更小的互耦效应。最后,仿真实验验证了所提出增强嵌套阵列的有效性。

关键词:增强嵌套阵列;自由度;互耦效应;DOA估计;稀疏线性阵列

中图分类号:TN911.7 文献标志码:A 文章编号:2095-2945(2019)24-0101-02

Abstract: In recent years, non-uniform linear array has attracted wide attention of researchers in the field of array signal processing. One of the key problems in formation design is to set the position of the sensor to obtain the maximum degree of freedom and the minimum mutual coupling effect. In this paper, the dense subarray of a nested array is divided into several parts, and then these parts are rearranged on both sides of the nested array. Based on this, the concept of enhanced nested array is proposed, and four typical forms of physical array element positions are given. At the same time, the position of the virtual sensor is deduced for any given number of array elements. Compared with the nested array with the same number of elements, theenhanced nested array proposed in this paper has higher degrees of freedom and smaller mutual coupling effect. Finally, simulation experiments verify the effectiveness of the proposed enhanced nested array.

Keywords: enhanced nested array; degree of freedom; mutual coupling effect; DOA estimation; sparse linear array

1 概述

阵列信号处理在许多领域具有关键作用,比如雷达、通信、导航等[1]。目前大部分研究人员主要关注均匀线阵(ULA),其相邻传感器间的阵元间距小于λ/2。对于均匀线阵来说,孔径的增加通常会增加硬件成本和计算复杂度。在获得最大的空间分辨率、自由度和最小的互耦效应方面,非均匀线阵(NLA)比均匀线阵更受关注,代表阵型为最小冗余阵列(MRAs)[2]或最小孔阵列(MHAs)[3]。近年来,关于嵌套阵列[4]和互质阵列[5]的研究重新引起了人们对NLA的关注。然而,NLA也存在局限性。MRA/MHA/NMRA闭式表达式,只有通过穷尽搜索出来的结果。嵌套阵列中包含密集的ULA,这都会引起高互耦效应。

本文提出了一种高自由度低复杂度的增强嵌套阵设计方法,该方法利用增强嵌套阵列(ANA)的概念,将子阵重新排列在嵌套阵列的两侧。同时,还创造性的给出了保证虚拟阵列无孔的空间物理阵型结构。理论分析结果显示,构造的ANA具有以下优点:(1)ANA具有闭式物理阵元位置和无孔的虚拟阵列模型。(2)在阵元数量相同的条件下,相比于互质阵列和嵌套阵列,ANA具有更高的阵列自由度。(3)相比于嵌套阵列和超级嵌套阵列的前几级,ANA的互耦度更低。

2 差分集合模型

5 结论

为了同时获得高阵列自由度和低互耦效应,本文提出了一种新的增强嵌套的稀疏NLA,该阵型保证了新形成的ANA是无孔的。结果表明,对于任何给定的阵元数,均可生成优良的稀疏阵列。仿真实验证明,与具有相同物理阵元数量的嵌套阵列相比,ANA可在不同的层面获得更高的阵列DOF。最后,仿真结果验证了所提出阵列流型的有效性。

参考文献:

[1]S. H. Talisa, K. W. O'Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somerlock, "Bene?ts of digital phased array radars," Proc. IEEE, vol. 104, no. 3, pp. 530-543, March 2016.

[2]A. Moffet, "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., vol. 16, no. 2, pp. 172-175, Mar 1968.

[3]E. Vertatschitsch and S. Haykin, "Nonredundant arrays," Proc. IEEE, vol. 74, no. 1, pp. 217-217, Jan 1986.

[4]P. Pal and P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4167-4181, Aug 2010.

[5]P. P. Vaidyanathan and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573-586, Feb 2011.