毛蕊异黄酮抑制肺腺癌细胞增殖和迁移的miR—21/PTEN信号通路机制研究

2019-10-20 05:25周立霞关洪全王淳马贤德王丹
中国药房 2019年12期
关键词:腺癌空白对照批号

周立霞 关洪全 王淳 马贤德 王丹

摘 要 目的:探討毛蕊异黄酮(CA)通过调控微RNA-21(miR-21)/人类第10号染色体缺失的磷酸酶及张力蛋白同源物(PTEN)信号通路对肺腺癌细胞增殖和迁移的抑制作用机制。方法:以人肺腺癌SPC-A1细胞为对象,采用MTT法检测不同剂量CA(5、15、25、50、75、100 μg/mL)作用12、24、48、72 h后的细胞增殖情况,并计算细胞存活率、30%细胞生长抑制浓度(IC30)和半数抑制浓度(IC50);采用Transwell迁移试验检测低、中、高剂量CA(50、75、100 μg/mL)作用24 h后的细胞迁移情况,记录染色细胞数并计算细胞迁移抑制率;采用蛋白质印迹法和实时聚合酶链反应法检测低、中、高剂量CA(50、75、100 μg/mL)作用24 h后细胞miR-21以及PTEN、血管内皮生长因子(VEGF)、基质金属蛋白酶9(MMP-9)蛋白及其mRNA的表达情况;检测细胞在分别转染miR-21模拟物(mimic)和抑制物(inhibitor)后,CA(75 μg/mL)对其miR-21及PETN、VEGF、MMP-9蛋白表达的影响。结果:经50、75、100 μg/mL CA作用12、24、48 h,25、50、75、100 μg/mL CA作用72 h后,细胞存活率均显著降低(P<0.05或P<0.01);12~72 h各时间点CA的IC30值分别为82.24、50.45、46.34、31.81 μg/mL,IC50值分别为108.06、73.35、70.08、49.89 μg/mL。与正常对照组比较,CA各剂量组染色细胞数,低剂量组细胞中VEGF蛋白以及中、高剂量组细胞中miR-21,VEGF、MMP-9蛋白及其mRNA的相对表达量均显著减少或降低,且中、高剂量组显著少于或低于低剂量组,高剂量组显著少于或低于中剂量组(P<0.05或P<0.01);CA各剂量组细胞迁移率以及中、高剂量组细胞中PTEN蛋白及其mRNA的相对表达量均显著升高,且中、高剂量组显著高于低剂量组,高剂量组显著高于中剂量组(P<0.05或P<0.01)。转染miR-21 mimic后,miR-21 mimic组细胞miR-21及VEGF、MMP-9蛋白的相对表达量均较正常对照组显著升高,PTEN蛋白的相对表达量显著降低(P<0.01);加入CA干预后,细胞中miR-21及VEGF、MMP-9蛋白的相对表达量均较miR-21 mimic组显著降低,PTEN蛋白的相对表达量均显著升高(P<0.05或P<0.01)。转染miR-21 inhibitor后,miR-21 inhibitor组细胞中miR-21及VEGF、MMP-9蛋白的相对表达量均较正常对照组显著降低,PTEN蛋白的相对表达量显著升高(P<0.05或P<0.01);加入CA干预后,细胞中miR-21及上述蛋白的表达较miR-21 inhibitor组均未见明显变化(P>0.05)。结论:CA可剂量依赖性地抑制肺腺癌SPC-A1细胞的增殖和迁移,且这种作用可能与调控miR-21/PTEN信号通路有关。

关键词 毛蕊异黄酮;微RNA-21/人类第10号染色体缺失的磷酸酶及张力蛋白同源物信号通路;肺腺癌;SPC-A1细胞;增殖;迁移;抑制作用;机制

Study on the miR-21/PTEN Signaling Pathway Mechanisms of Calycosin Inhibiting the Proliferation and Migration of Lung Adenocarcinoma Cells

ZHOU Lixia1,GUAN Hongquan1,WANG Chun1,MA Xiande1,WANG Dan2(1. College of Basic Medicine, Liaoning University of TCM, Shenyang 110032, China; 2. Graduate School, Jinzhou Medical University, Liaoning Jinzhou 121001, China)

ABSTRACT OBJECTIVE: To investigate the mechanism of calycosin (CA) inhibiting the proliferation and migration of lung adenocarcinoma cells by regulating miR-21/PTEN signaling pathway. METHODS: Using lung adenocarcinoma SPC-A1 cells as objects, cell proliferation was detected by MTT method after treated with different doses of CA (5, 15, 25, 50, 75, 100 μg/mL) for 12, 24, 48, 72 h. Cell survival rate, 30% cell growth inhibition concentration (IC30) and half inhibition concentration (IC50) were calculated. Transwell migration test was used to detect the migration of cells after treated with low-dose, medium-dose and high-dose of CA (50, 75, 100 μg/mL) for 24 h. The number of stained cells was recorded and inhibition rate of cell migration were calculated. Western blotting assay and real-time PCR were used to detect the expression of miR-21 as well as the proteins and their mRNAs expression of PTEN, VEGF, MMP-9 after treated with low-dose, medium-dose and high-dose of CA (50, 75, 100 μg/mL) for 24 h. After transfected with miR-21 mimics and miR-21 inhibitor, the effects of CA (75 μg/mL) on the expression of miR-21 and the protein expression of PETN, VEGF and MMP-9 were detected. RESULTS: After treated with 50, 75, 100 μg/mL CA for 12, 24, 48 h, 25, 50, 75, 100 μg/mL CA for 72 h, cell survival rate was decreased significantly (P<0.05 or P<0.01). IC30 of CA were 82.24, 50.45, 46.34, 31.81 μg/mL ; IC50 of CA were 108.06, 73.35, 70.08, 49.89 μg/mL during 12-72 h. Compared with normal control group, the number of stained cells in CA groups, protein expression of VEGF in CA low-dose group, expression of miR-21 as well as proteins and their mRNAs expression of VEGF, MMP-9 in CA medium-dose and high-dose groups were decreased significantly; the medium-dose and high-dose groups were significantly less or lower than low-dose group; the high-dose group was significantly less or lower than medium-dose group (P<0.05 or P<0.01). Cell migration rate of CA groups as well as protein and its mRNA expression of PTEN in CA medium-dose and high-dose groups were increased significantly; the medium-dose and high-dose groups were significantly higher than the low-dose group; the high-dose group was significantly higher than the medium-dose groups (P<0.05 or P<0.01). After transfected with miR-21 mimics, expression of miR-21 as well as protein expression of VEGF and MMP-9 were increased significantly in miR-21 mimic group, compared with normal control group; protein expression of PTEN was decreased significantly (P<0.01). After intervened by CA, expression of miR-21 as well as protein expression of VEGF and MMP-9 in cells were decreased significantly, compared with miR-21 mimic group; protein expression of PTEN was increased significantly (P<0.05 or P<0.01). After transfected with miR-21 inhibitor, expression of miR-21 as well as protein expression of VEGF and MMP-9 were decreased significantly in miR-21 inhibitor group, compared with normal control group; protein expression of PTEN was increased significantly (P<0.05 or P<0.01). After intervened by CA, the expression of miR-21 and above protein had no significant change in cells, compared with miR-21 inhibitor group (P>0.05). CONCLUSIONS: CA can inhibit the proliferation and migration of lung adenocarcinoma SPC-A1 cells in a dose-dependent manner, which may be associated with the regulation of miR-21/PTEN signaling pathway.

KEYWORDS Calycosin; miR-21/PTEN signaling pathway; Lung adenocarcinoma; SPC-A1 cells; Proliferation; Migration; Inhibitory effect; Mechanism

尽管目前肺癌的诊断和治疗方法取得了显著进展,其近期发病率和病死率均有所下降,但肺癌仍然是呼吸系统最常见的恶性肿瘤之一[1]。肺癌诊断方法的发展虽给患者的生存带来了一定益处,但由于对肺癌发病机制的认知有限,加之其尚缺乏典型的早期症状,故大部分患者确诊时已处于晚期,错失了手术机会,最终导致临床干预效果欠佳[2-3]。肺腺癌作为最为常见的非小细胞肺癌,具有腺体/导管形成、大量黏液产生等病理特征,其发病机制复杂,患者预后较差[4-5]。因此,阐明肺腺癌发生发展的分子调节机制、确定新的早期筛选分子靶点和研发新的治疗药物具有重要意义。

微RNA(microRNAs)是一类广泛存在于真核生物体内、长度约为21~25个核苷酸的内源性非编码蛋白质的进化保守的单链小分子RNA,在确定细胞身份、调控基因表达的过程中发挥着关键作用[6]。同时相关研究证实,microRNAs几乎与所有类型恶性肿瘤的发生、发展密切相关[7]。microRNA-21(miR-21)作为一种参与并促进肿瘤发展的microRNA,被证实可参与调节人类第10号染色体缺失的磷酸酶及张力蛋白同源物(PTEN)基因的表达[8-9]。PTEN是新近发现的抑癌基因,其编码蛋白PTEN具有脂质磷酸酶活性;此外,该基因缺失可上调下游血管内皮生长因子(VEGF)和基质金属蛋白酶9(MMP-9)编码基因的表达,从而诱导肺癌等多种恶性肿瘤的发展[10-11]。

毛蕊异黄酮(CA)是一种异黄酮类化合物,是中药黄芪的主要活性成分之一,具有低毒、多作用靶点等优点[12]。近年来研究显示,CA具有抗肿瘤活性,可通过抑制丝裂原活化蛋白激酶(MAPR)、蛋白激酶B(Akt)、Janus激酶/信号转导与转录激活因子(JAK/STAT)等信号通路抑制乳腺癌等多种肿瘤细胞的增殖[13-14],但其对肺腺癌细胞影响的研究较少。为此,本研究拟考察CA对肺腺癌细胞增殖和迁移的体外抑制作用,并从调控miR-21靶向基因PTEN的分子角度初步探讨CA的抗肿瘤机制,以期为明确其干预肺腺癌发展的分子机制、完善肺腺癌的临床治疗方法提供参考。

1 材料

1.1 仪器

ELx 800型酶标仪(美国BioTek公司)、2800-00 Odyssey型双色红外激光成像系统(美国LICOR公司);PROTEAN Ⅱ xi型垂直电泳系统、170-3940型半干法转膜仪、170-4152型湿法转膜仪、LAS 4000 mini型化学发光成像仪、ABI 7500型荧光定量聚合酶链反应(PCR)仪(美国Bio-Rad公司);T100型PCR仪、Nano Drop 2000型紫外分光光度计(美国Thermo Fisher Scientific公司);CKX53型倒置显微镜、BX31型荧光显微镜(日本Olympus公司);5810R低温高速离心机(德国Eppendorf公司)。

1.2 药品与试剂

CA对照品(批号:B9938,纯度:>98%)、MTT试剂(批号:M2128)均购自美国Sigma公司;磷酸盐缓冲液(PBS,pH 7.4,批号:P6504)、蛋白上样缓冲液(批号:P196382-1)、RIPA裂解液(批号:C500005)、免疫印迹化学发光液(ECL)(批号:C510043)均购自生工生物工程(上海)股份有限公司;胰酶(批号:25300054)、青霉素-链霉素双抗(批号:15140163)、胎牛血清(FBS,批号:10100-147)、RPMI 1640培养基(批号:61870044)、Opti-MEM培养基(批号:11058021)均购自美国Gibco公司;TE缓冲液(pH 7.5,上海哈灵生物科技有限公司,批号:HL12441);Transwell小室(批号:3428)、Matrigel基质胶(批号:356234)均购自美国Corning公司;二喹啉甲酸(BCA)蛋白定量试剂盒(美国Thermo Fisher Scientific公司,批号:A53225);Trizol试剂(批号:87902)、实时聚合酶链反应(Real-time PCR)试剂盒(批号:00182806)均购自美国Invitrogen公司;miR-21模拟物(mimic)及其抑制物(inhibitor)的miRNA(批號分别为A0018071、A0028071)均购自苏州吉玛基因股份有限公司;Lipofectamine 2000转染试剂(美国Invitrogen公司,批号:11668019);逆转录试剂盒(日本Takara公司,批号:D6110A);小鼠抗人β-肌动蛋白(β-actin)抗体(碧云天生物技术有限公司,批号:AA128);小鼠抗人PTEN抗体(美国Abcam公司,批号:ab170941);辣根过氧化物(HRP)标记的羊抗小鼠IgG二抗(北京中杉金桥生物技术有限公司,批号:ab150077);miR-21、U6引物均由美国GeneCopoeia公司合成;PTEN、MMP-9、VEGF、β-actin引物均由美国Invitrogen公司设计、合成;二甲基亚砜(DMSO)等试剂均为分析纯,水为蒸馏水。

1.3 细胞

人肺腺癌细胞株SPC-A1购自美国ATCC公司。

2 方法

2.1 药液配制

取CA对照品适量,用DMSO溶解,制成质量浓度为100 μg/mL的贮备液,于4 ℃保存,备用。临用前,用PBS将上述贮备液稀释至所需质量浓度,即得。

2.2 细胞培养

取人肺腺癌细胞株SPC-A1适量,用含10%FBS的RPMI 1640培养基(以下简称“完全培养基”)于37 ℃ 、5%CO2培养箱(下同)中培养,每36 h更换1次培养基。待细胞融合至80%~90%时,用0.25%胰酶消化传代,选取对数生长期的细胞进行后续试验。

2.3 CA对SPC-A1细胞存活率的影响

采用MTT法检测。取对数生长期细胞,以1×105个/mL的密度按100 μL/孔接种于96孔板中,培养过夜。将细胞随机分为正常对照组(加细胞,不加药物)和CA不同剂量组(5、15、25、50、75、100 μg/mL,剂量设置参考前期预试验结果),同时设置不加细胞和药物的空白对照组,每组设3个复孔。弃去培养基,空白对照组和正常对照组加入完全培养基100 μL,各给药组加入含相应药物的完全培养基100 μL,分别于培养12、24、48、72 h时弃去培养基;每孔加入MTT试剂10 μL,培养4 h后,弃去上清液;每孔加入DMSO 100 μL,置摇床中于室温下振摇15 min。使用酶标仪于562 nm波长处检测各孔的光密度(OD)。以空白对照组为基准,计算各组的细胞存活率[细胞存活率(%)=(试验组平均OD值-空白对照组平均OD值)/(正常对照组平均OD值-空白对照组平均OD值)×100%]以及30%细胞生长抑制浓度(IC30)和半数抑制浓度(IC50)。上述试验重复3次。

2.4 CA对SPC-A1细胞迁移能力的影响

采用Transwell迁移试验检测。取对数生长期细胞,用完全培养基重悬细胞至1×105个/mL,取上述细胞悬液100 ?L置于Transwell小室上层,下层加入完全培养基500 ?L,培养24 h。将细胞随机分为正常对照组(加细胞,不加药物)和CA低、中、高剂量组(50、75、100 μg/mL,剂量设置参考“2.3”项下测得IC30、IC50值),同时设置不加细胞和药物的空白对照组(为排除其他因素的干扰,下同),每组设3个复孔。弃去培养基,空白对照组和正常对照组于小室上层加入RPMI 1640培养基100 ?L,各给药组于小室上层加入含相应药物的RPMI 1640培养基100 ?L,各组小室下层均加入含20%FBS的RPMI 1640培养基500 ?L,培养24 h;弃去上、下层培养基,用棉签擦拭上层底部未穿过聚碳酸酯膜的细胞,用PBS清洗2次,以甲醇固定30 min,风干15 min;以0.1%结晶紫-甲醛溶液染色20 min,用PBS清洗3次,风干。使用倒置显微镜观察,每孔随机选取6个视野,拍照并记录染色细胞数(即发生迁移细胞的数量),同时计算细胞迁移抑制率(%)[细胞迁移抑制率=(正常对照组迁移细胞数-试验组迁移细胞数)/正常对照组迁移细胞数×100%]。上述试验重复3次。

2.5 CA对SPC-A1细胞中PTEN、VEGF、MMP-9蛋白表达的影响

采用蛋白质印迹法检测。取对数生长期细胞,以1×105个/mL的密度按500 ?L/瓶接种于培养瓶中,培养24 h。按“2.4”项下方法分组,每组设3个复孔。弃去培养基,空白对照组和正常对照组加入完全培养基200 ?L,各给药组加入含相应药物的完全培养基200 ?L,培养24 h;弃去培养基,用4 ℃的PBS清洗2次,加入RIPA裂解液80 ?L,于冰上裂解30 min;在4 ℃下以20 000 r/min离心15 min,收集上清液,采用BCA法测定蛋白浓度,严格按相应试剂盒说明书方法操作。蛋白经5×蛋白上样缓冲液以体积比1 ∶ 4稀释,在沸水浴中变性10 min后,于-80 ℃保存,备用。每组取上述蛋白30 μg,进行SDS-PAGE电泳,电泳结束后转移至PVDF膜上,以5%脱脂奶粉室温封闭1 h,加入相应一抗[β-actin(内参,1 ∶ 1 000)、PETN(1 ∶ 500)、VEGF(1 ∶ 1 000)、MMP-9(1 ∶ 1 000)],4 ℃孵育过夜,用PBS清洗3次,每次5 min;加入二抗(1 ∶ 5 000),室温孵育1 h,用PBS清洗3次,每次10 min,于37 ℃摇床中继续孵育1 h;经ECL显色后,置于双色红外激光成像系统上成像,采用Image Lab 3.0软件分析,以目标蛋白与内参蛋白条带灰度值的比值表示目标蛋白的相对表达量。上述试验重复3次。

2.6 CA对SPC-A1细胞中miR-21及PTEN、VEGF、MMP-9 mRNA表达的影响

采用Real-time PCR法检测。取对数生长期细胞,以1×105个/mL的密度按100 ?L/瓶接种于培养瓶中,培养24 h。按“2.5”项下方法分組、给药。培养24 h后,弃去培养基,采用Trizol法提取细胞总RNA,严格按相应试剂说明书操作。将总RNA用焦碳酸二乙酯(DEPC)水20 ?L复溶,取1 ?L,用TE缓冲液以1 ∶ 100的体积比稀释,使用紫外分光光度计分别于260、280 nm波长处检测各孔的吸光度,以考察RNA的纯度和浓度。参照逆转录试剂盒说明书方法将总RNA中的mRNA逆转录成cDNA。以上述cDNA为模板,按Real- time PCR试剂盒说明书进行扩增,反应体系(共20 ?L):SYBR Green Mix 10 ?L,上、下游引物(引物序列见表1)各1 ?L,模板cDNA 2 ?L,ddH2O 6 ?L。反应条件:95 ℃预变性20 s,95 ℃变性10 s,62℃退火30 s,70℃延伸30 s,共40个循环。分别以β-actin(针对PTEN、VEGF、MMP-9)和U6(针对miR-21)为内参,采用2-ΔΔCt法以ABI Prism? SDS 2.0.3软件计算各目标mRNA的相对表达量(Ct表示每个反应管内荧光信号强度达到设定阈值时所经历的循环数)。上述试验重复3次。

2.7 CA对转染SPC-A1细胞中miR-21及PTEN、VEGF、

MMP-9蛋白表达的影响取对数生长期细胞,用0.25%胰酶消化后,以1 000 r/min离心5 min,收集细胞,用完全培养基重悬至2×105个/mL,按100 μL/孔接种于6孔板中,待细胞融合至80%,换无血清的RPMI 1640培养基继续培养16 h。将细胞随机分为正常对照组(不含药物,不转染,细胞正常生长)、miR-21 mimic组(不含药物,转染miR-21 mi- mic)、miR-21 mimic+CA组[CA 75 μg/mL(剂量设置参考“2.3”项下测得IC50值,下同),转染miR-21 mimic]、miR-21 inhibitor组(不含药物,转染miR-21 inhibitor)和miR-21 inhibitor+CA组(CA 75 μg/mL,转染miR-21 inhibitor),同时设置不加细胞和药物的空白对照组,每组设3个复孔。在转染前,取Lipofectamine 2000转染试剂5 μL,用Opti-MEM培养基250 ?L稀释至100 nmol/L,轻轻混匀,室温孵育5 min;将miR-21 mimic或inhibitor用不含血清的Opti-MEM培养基250 ?L稀释至50 nmol/L,轻轻混匀,室温孵育5 min。将上述两种混合液轻轻混匀,室温孵育20 min,即得转染复合物。除空白对照组和正常对照组加入RPMI 1640培养基100 μL外,其余各组均加入含或不含CA的转染复合物100 μL进行转染。转染培养24 h后,按“2.5”“2.6”项下方法检测各组细胞中PTEN、MMP-9、VEGF蛋白及miR-21的相对表达量。上述试验重复3次。

2.8 统计学方法

采用Graphpad Prism 5软件对数据进行统计分析。计量资料以x±s表示,组间比较采用t检验。P<0.05为差异有统计学意义。

3 结果

3.1 CA对SPC-A1细胞存活率影响的检测结果

3.2 CA对SPC-A1细胞迁移能力影响的检测结果

与正常对照组比较,CA各剂量组染色细胞数均显著减少,且中、高剂量组显著少于低剂量组,高剂量组显著少于中剂量组;各剂量组细胞迁移抑制率均显著升高,且中、高剂量组显著高于低剂量组,高剂量组显著高于中剂量组,差异均有统计学意义(P<0.05或P<0.01),详见图1、表3。

3.3 CA对SPC-A1细胞中PTEN、VEGF、MMP-9蛋白表达影响的检测结果

与正常对照组比较,CA中、高剂量组细胞中PETN蛋白的相对表达量均显著升高,且中、高剂量组显著高于低剂量组,高剂量组显著高于中剂量组;低剂量组细胞中VEGF蛋白以及中、高剂量组细胞中VEGF、MMP-9蛋白的相对表达量均显著降低,且中、高剂量组显著低于低剂量组,高剂量组显著低于中剂量组,差异均有统计学意义(P<0.05或P<0.01),详见图2、表4。

3.4 CA对SPC-A1细胞中miR-21及PTEN、VEGF、MMP-9 mRNA表达影响的检测结果

与正常对照组比较,CA中、高剂量组细胞中PTEN mRNA的相对表达量均显著升高,且中、高剂量组显著高于低剂量组,高剂量组显著高于中剂量组;CA中、高剂量组细胞中miR-21及VEGF、MMP-9 mRNA的相对表达量均显著下降,且中、高剂量组显著低于低剂量组,高剂量组显著低于中剂量组,差异均有统计学意义(P<0.05或P<0.01),详见表5。

与正常对照组比较,转染miR-21 inhibitor后,miR- 21 inhibitor组细胞中miR-21及VEGF、MMP-9蛋白的相对表达量均显著降低,PTEN蛋白的相对表达量显著升高,差异均有统计学意义(P<0.05或P<0.01);与miR- 21 inhibitor组比较,miR-21 inhibitor+CA组细胞中miR-21及上述蛋白的相对表达量均无明显变化,组间比较差异均无统计学意义(P>0.05),详见图4、表7。

4 讨论

肺癌为呼吸系统常见的恶性肿瘤之一,肺腺癌作为一种非小细胞肺癌,其发病率在逐年上升,对肺腺癌的诊断和治疗是目前临床亟待解决的重要课题[1,15]。大多数研究者认为,抑制肺腺癌细胞的增殖和转移是临床干预治疗的重要策略[16]。我国中草药的应用历史悠久,已有研究证实许多中药活性成分具有抗肿瘤作用,且具有毒副作用小、不易耐药等优点[17]。CA是中药黄芪的主要活性成分之一,近年来大量研究表明,其对结肠癌、乳腺癌、卵巢癌等均具有一定的抑制作用[18-20],但其对肺癌细胞的体内外抑制作用的相关研究较少。目前,肺癌的发病率和病死率位居各类肿瘤之首,且临床干预效果欠佳[2-3,21]。因此,深入研究CA对肺癌的抑制作用具有十分重要的意义。

已有研究表明,CA能够抑制肺腺癌A549细胞的增殖和侵袭,其抑制迁移和侵袭的作用机制可能与抑制蛋白激酶C-α(PKC-α)途径,下调MMP-2、MMP-9和整合素β的表达有关[22]。本研究参照前期预试验结果,采用MTT法考察了不同剂量(5、15、25、50、75、100 μg/mL)CA对肺腺癌SPC-A1细胞增殖的影响。结果显示,经50、75、100 μg/mL CA作用12、24、48 h,25、50、75、100 μg/mL CA作用72 h后,细胞存活率均较正常对照组显著降低,差异均有统计学意义。这提示当CA达到一定剂量时,其可有效抑制SPC-A1细胞的增殖。此外本研究结果还显示,CA作用12、24、48、72 h时的IC30值分别为82.24、50.45、46.34、31.81 μg/mL,IC50值分别为108.06、73.35、70.08、49.89 μg/mL。綜合考虑上述结果,最终将Transwell迁移、蛋白质印迹、Real-time PCR试验的CA低、中、高剂量均分别设置为50、75、100 μg/mL,将细胞转染试验的CA剂量设置为75 μg/mL,药物的作用时间均确定为24 h。

Transwell遷移试验结果显示,CA各剂量组染色细胞数均较正常对照组显著减少,且中、高剂量组显著少于低剂量组,高剂量组显著少于中剂量组;细胞迁移抑制率均较正常对照组显著升高,且中、高剂量组显著高于低剂量组,高剂量组显著高于中剂量组。这提示CA能有效抑制SPC-A1细胞的迁移,且呈剂量依耐性。

肿瘤细胞增殖和迁移相关的生物学机制主要包括生长调控机制异常、细胞凋亡异常、细胞运动机制异常和细胞降解机制异常等[23]。PTEN是近年来发现的一种具有双特异性磷酸水解酶功能的抑癌基因,对细胞内多条信号通路具有负性调节作用,与肺癌等多种恶性肿瘤的发展密切相关[24]。VEGF是重要的促血管生长因子,可诱导新生血管形成,从而促进肿瘤细胞的增殖、迁移[25]。MMP(尤其是MMP-9)也被证实在肺癌细胞的迁移和侵袭过程中发挥了重要的作用[26]。有研究指出,肺癌细胞中VEGF、MMP-9蛋白的表达水平是评价肺癌恶性程度的重要指标,也是PTEN参与调控的下游靶点[27]。miRNAs是广泛存在于真核生物体内的内源性干扰RNA,其可通过与靶基因mRNA的3′端结合来发挥抑制靶基因表达的作用,从而参与多种疾病的发生发展过程[28]。其中,miR-21与癌症发生有关,且在多种人类肿瘤细胞中呈过表达[29];miR-21表达的上调可造成抑癌基因PTEN的表达受到抑制,从而加速肿瘤的病理进展;此外,miR-21也被认为是评价肺癌恶性程度的重要指标之一,可用于患者的肿瘤恶性程度及其预后的评估[30-31]。基于以上理论,本研究初步探讨了CA通过调控miR-21/PTEN信号通路抑制肺腺癌细胞侵袭和转移的分子机制。结果显示,CA中、高剂量组细胞中PTEN蛋白及其mRNA的相对表达量均较正常对照组显著升高,且中、高剂量组显著高于低剂量,高剂量组显著高于中剂量组;CA低剂量组细胞中VEGF蛋白以及中、高剂量组细胞中VEGF、MMP-9蛋白及其mRNA的相对表达量均较正常对照组显著降低,且中、高剂量组显著低于低剂量组,高剂量组显著低于低剂量组。这提示不同剂量的CA均可不同程度地上调PTEN蛋白及其mRNA的表达,下调VEGF、MMP-9蛋白及其mRNA的表达,且呈剂量依赖性。

为进一步验证miR-21对PTEN表达的影响,本研究分别对SPC-A1细胞进行了miR-21 mimic、miR-21 inhibitor转染,并考察了转染后细胞中miR-21及PTEN、VEGF、MMP-9蛋白的表达情况。结果显示,转染miR- 21 mimic后,miR-21 mimic组细胞中miR-21及VEGF、MMP-9蛋白的相对表达量均显著升高,PTEN的相对表达量显著降低;加入CA干预后,细胞中miR-21及VEGF、MMP-9蛋白的相对表达量均较miR-21 mimics组显著降低,PTEN的相对表达量显著升高。转染miR-21 inhibitor后,miR-21 inhibitor组细胞中miR-21及VEGF、MMP- 9蛋白的相对表达量均显著降低,PTEN蛋白的相对表达量显著升高;加入CA干预后,细胞中miR-21及上述蛋白的相对表达量较miR-21 inhibitor组均未发生显著变化。这提示在miR-21过表达的SPC-A1细胞中,CA能明显逆转miR-21诱导的PTEN下调;而在miR-21低表达的SPC-A1细胞中,CA对PTEN表达无明显调控作用,表明CA对肺腺癌SPC-A1细胞增殖、迁移的抑制作用可能是通过抑制miR-21表达、促进PTEN表达来实现的。

综上所述,CA能抑制肺腺癌SPC-A1细胞的增殖和迁移,这种作用可能与调控miR-21/PTEN信号通路有关。本研究可为肺腺癌防治研究提供新的思路,但CA通过PTEN调控VEGF、MMP-9表达的具体机制仍有待于后续研究进一步确证。

参考文献

[ 1 ] Global Burden of Disease Cancer,FITZMAURICE C,AKINYEMIJU TF,et al. Global,regional,and national cancer incidence,mortality,years of life lost,years lived with disability,and disability-adjusted life-years for 29 cancer groups,1990 to 2016:a systematic analysis for the global burden of disease study[J]. JAMA Oncol,2018,4(11):1553-1568.

[ 2 ] BROWN NA,AISNER DL,OXNARD GR. Precision medicine in non-small cell lung cancer:current standards in pathology and biomarker interpretation[J]. Am Soc Clin Oncol Educ Book,2018. DOI:10.1200/EDBK_209089.

[ 3 ] KUMARAKULASINGHE NB,VAN ZANWIJK N,SOO RA. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer:NSCLC[J]. Respirology,2015,20(3):370-378.

[ 4 ] ZAMAY TN,ZAMAY GS,KOLOVSKAYA OS,et al. Current and prospective protein biomarkers of lung cancer[J]. Cancers:Basel,2017. DOI:10.3390/cancers9110155.

[ 5 ] NAKAMURA H,NISHIMURA T. History,molecular features,and clinical importance of conventional serum biomarkers in lung cancer[J]. Surg Today,2017,47(9):1037-1059.

[ 6 ] ZHENG Y,XIE J,JIANG F,et al. Inhibition of miR 21 promotes cell apoptosis in oral squamous cell carcinoma by upregulating PTEN[J]. Oncol Rep,2018,40(5):2798-2805.

[ 7 ] HUANG Y,HU Q,DENG Z,et al. MicroRNAs in body fluids as biomarkers for non-small cell lung cancer:a systematic review[J]. Technol Cancer Res Treat,2014,13(3):277-287.

[ 8 ] LONG ZW,WU JH,CAI H,et al. miR-374b promotes proliferation and inhibits apoptosis of human GIST cells by inhibiting PTEN through activation of the PI3K/Akt pathway[J]. Mol Cells,2018,41(6):532-544.

[ 9 ] YUAN Y,XU XY,ZHENG HG,et al. Elevated miR-21 is associated with poor prognosis in non-small cell lung cancer:a systematic review and meta-analysis[J]. Eur Rev Med Pharmacol Sci,2018,22(13):4166-4180.

[10] LIU C,YANG Z,DENG Z,et al. Downregulated miR- 144-3p contributes to progression of lung adenocarcinoma through elevating the expression of EZH2[J]. Cancer Med,2018,7(11):5554-5566.

[11] TSAI CC,WU HH,CHANG CP,et al. Calycosin-7-O-beta-D-glucoside reduces myocardial injury in heat stroke rats[J]. J Formos Med Assoc,2019,118(3):730-738.

[12] YANG J,JIA M,ZHANG X,et al. Calycosin attenuates MPTP-induced Parkinsons disease by suppressing the activation of TLR/NF-κB and MAPK pathways[J]. Phytother Res,2018,33(2):309-318.

[13] SUN H,YIN M,QIAN W,et al. Calycosin,a Phytoestrogen isoflavone,induces apoptosis of estrogen receptor-positive MG-63 osteosarcoma cells via the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin(mTOR) pathway[J]. Med Sci Monit,2018. DOI:10.12659/MSM.910201.

[14] DEY P,GHOSH RK. Fine-needle aspiration cytology of non-small cell lung carcinoma:a paradigm shift[J]. Diagn Cytopathol,2019,47(4):351-358.

[15] HAJIASGHARZADEH K,SOMI MH,SHANEHBANDI D,et al. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma[J]. J Cell Physiol,2019,234(4):3263-3276.

[16] LI M,AN W,XU L,et al. The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer cells[J]. J Exp Clin Cancer Res,2019. DOI:10.1186/s13046- 019-1064-8.

[17] LI YL,ZHANG XY,LENG Y,et al. Global protein expression analysis of molecular markers of DS-1-47,a component of implantation-promoting traditional chinese medicine[J]. J Huazhong Univ Sci Technolog Med Sci,2016,36(6):910-915.

[18] ZHOU Y,LIU QH,LIU CL,et al. Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins[J]. Tumor Biol,2015,36(7):5333-5339.

[19] CHEN J,HOU R,ZHANG X,et al. Calycosin suppresses breastcancer cell growth via ERβ -dependent regulation of IGF-1R,p38 MAPK and PI3K/Akt pathways[J]. PLoS One,2014. DOI:10.1371/journal.pone.0091245.

[20] CHEN J,ZHAO X,LI X,et al. Calycosin induces apoptosis by the regulation of ERβ/miR-17 signaling pathway in human colorectal cancer cells[J]. Food Funct,2015,6(9):3091-3097.

[21] QIU R,MA G,LI X,et al. Clinical case report of patients with osteosarcoma and anticancer benefit of calycosin against human osteosarcoma cells[J]. J Cell Biochem,2018,120(6):10697-10706.

[22] CHENG XD,GU JF,YUAN JR,et al. Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKC-α/ERK1/2 pathway:an in vitro investigation[J]. Mol Med Rep,2015,12(6):7992-8002.

[23] FOUAD H,SALEM H,ELLAKWA DE,et al. MMP-2 and MMP-9 as prognostic markers for the early detection of urinary bladder cancer[J]. J Biochem Mol Toxicol,2018. DOI:10.1002/jbt.22275.

[24] YU T,LIU L,LI J,et al. miRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN[J]. Oncotarget,2015,6(30):30239-30250.

[25] ZOGRAFOS L. Intravitreal anti-VEGF for the treatment of irradiation induced optic neuropathy and maculopathy[J]. Acta Ophthalmologica,2018. DOI:10.1111/aos.13972_

534.

[26] HAMILTON A J,SEID J,VERDECCHIA K,et al. Abscopal effect after radiosurgery for solitary brain metastasis from non-small cell lung cancer[J]. Cureus,2018. DOI:10.7759/cureus.3777.

[27] PERUMAL E,SO YK,SUN S,et al. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells[J]. Lung Cancer,2019. DOI:10.1016/j.lungcan.2019.01.013.

[28] WU Y,SONG Y,XIONG Y,et al. microRNA-21(miR- 21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer[J]. Cell Physiol Biochem,2017,43(3):945-958.

[29] GAO W,LU X,LIU L,et al. miRNA-21:a biomarker predictive for platinum-based adjuvant chemotherapy response in pantents with non-small cell lung cancer[J]. Cancer Biol Ther,2012,13(5):330-340.

[30] HE Y,HUANG C,LI L. miR-21 is a critical therapeutic target for renal fibrosis[J]. Cell Biochem Biophys,2014,68(3):635-636.

[31] YANG M,SHEN H,QIU C,et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer[J]. Eur J Cancer,2013,49(3):604-615.

(收稿日期:2018-12-13 修回日期:2019-04-05)

(編辑:张元媛)

猜你喜欢
腺癌空白对照批号
培美曲塞联合顺铂一线化疗在老年晚期肺腺癌治疗中的效果探究
我国科学家揭示肺腺癌分子全景
例析阴性对照与阳性对照在高中生物实验教学中的应用
表现为单纯磨玻璃密度结节的肺浸润性腺癌的影像学特征分析
Galectin—9蛋白过表达对卵巢癌细胞增殖、迁移及凋亡的影响
镜像治疗截肢后幻肢痛的随机对照试验
兰州72批次中药材及饮片抽检不合格
气相色谱法测定速效心痛滴丸主要成分的研究