李扬 左新河 华川
[摘要] 自身免疫性甲状腺疾病(AITD)的发病率呈现上升趋势,复杂的环境因素、遗传因素以及内分泌激素的相互作用可能是该病的病因,AITD的发病机制主要为T淋巴细胞和B淋巴细胞活化,产生针对甲状腺组织的自身抗体,从而使甲状腺产生不同程度的损伤并发生功能变化。T淋巴细胞中与AITD密切相关的是辅助性T淋巴细胞,其存在多种亚型(Th1、Th2、Th17、Treg等),其中Th1/Th2细胞失衡及Th17细胞活化均参与了AITD的发生,而Treg细胞可发挥重要免疫抑制功能;B淋巴细胞活化是Graves病发生的核心病理过程,而Breg细胞可抑制自身免疫反应,并能调控T淋巴细胞的效应,是极具潜力的AITD治疗靶点。本文综述了T、B淋巴细胞在AITD中的作用机制,为寻找有效的治疗途径提供一定思路。
[关键词] 自身免疫性甲状腺疾病;T淋巴细胞;B淋巴细胞;机制
[中图分类号] R581 [文献标识码] A [文章编号] 1673-7210(2019)08(b)-0049-04
[Abstract] The incidence rate of autoimmune thyroid diseases (AITD) is on the rise. The interaction of complex environmental factors, genetic factors and endocrine hormone may be the causes of the disease. The pathogenesis of AITD is mainly the activation of T lymphocytes and B lymphocytes, which produce autoantibodies targeted at thyroid tissues, so as to cause different degrees of thyroid injury and produce functional changes. In T lymphocytes, helper T lymphocytes are closely related to AITD. It has many subtypes, such as Th1, Th2, Th17, Treg, and so on. Th1/Th2 cell imbalance and Th17 cell activation are involved in the occurrence of AITD, while Treg cells can play an important role in immune suppression function; B lymphocyte activation is the core pathological process of the occurrence of Graves′ disease, while Breg cells can inhibit the autoimmune response and regulate the effect of T lymphocytes, which is a potential therapeutic target of AITD. This paper reviews the mechanism of T and B lymphocytes involved in AITD, which provides some ideas for finding effective therapeutic approaches.
[Key words] Autoimmune thyroid disease; T lymphocyte; B lymphocyte; Mechanism
自身免疫性甲状腺疾病(AITD)主要包括桥本甲状腺炎(HT)和Graves病(GD)。流行病学调查数据显示HT发病率呈现上升趋势,接近5%~10%,女性发病率是男性的5~10倍[1];GD的发病率约为1%,女性发病率为男性的4~5倍[2]。
AITD的病因尚未明确,目前认为由复杂的环境因素、遗传因素以及内分泌激素的相互作用所致,其发生可能是由于过度暴露甲状腺自身抗原,或者修饰后的甲状腺自身抗原,或者处于与甲状腺自身抗原高相似性物质中,以及多克隆自身抗原的激活等[3-4]。AITD特征为甲状腺失去免疫耐受状态,反应性淋巴细胞活化,产生甲状腺自身抗体和发生淋巴细胞浸润。细胞免疫和体液免疫均参与了AITD的发病[5],T淋巴细胞(以下简称“T细胞”)、B淋巴细胞(以下简称“B细胞”)在其病理过程中起着至关重要的作用。本文综述了T、B细胞参与AITD相关发病机制的研究,试图为寻找有效的治疗途径提供思路。
1 AITD中T细胞的作用机制研究
T细胞来源于胎儿肝和骨髓的前体干细胞,其迁移至胸腺后分化为成熟T细胞,根据其功能的不同分为细胞毒性T细胞(表达CD8,主要负责细胞内病原体的免疫防御和肿瘤监视)、辅助性T细胞(表达CD4)[6],后者在AITD中发挥重要作用。辅助性T细胞(Th细胞)由抗原肽激活[6],根据释放的细胞因子分成多个亚型,主要有Th1、Th2、Th17细胞[8]。Th1细胞产生肿瘤坏死因子-β(TNF-β)、γ干扰素(IFN-γ)和白细胞介素(IL)-2,主要参与细胞介导的组织损伤反应;Th2细胞主要分泌IL-4、IL-5、IL-6、IL-13,在体液免疫中驅动B细胞产生抗体[9];Th17细胞主要分泌IL-17[10]。另有一类T细胞可以抑制免疫炎性反应,称为调节性T细胞(Treg)[11]。
部分观点认为AITD的启动发生在围生期,胸腺中的未成熟淋巴细胞暴露自身抗原,从而诱导产生机体的免疫耐受,而在这个关键时期,如果自身反应性T细胞出现克隆缺失或诱导无能,则可能丧失对自身抗原的免疫耐受性[12]。
1.1 Th1和Th2淋巴细胞在AITD中的作用
传统观点认为,HT为Th1介导的细胞免疫,Th1细胞可激活细胞毒性T细胞和巨噬细胞,破坏甲状腺滤泡上皮细胞,导致随后的甲状腺炎和甲状腺腺体的损伤[13];而GD为Th2细胞介导的体液免疫,Th2细胞可激活B细胞和浆细胞,产生攻击甲状腺的自身抗体。
但后来更多的研究发现,GD与HT之间有时可以相互转化,提示这两者的病理生理机制具有相关性[14]。如Chardès等[15]研究发现GD患者也存在Th1细胞功能紊乱,也可出现血清TPO抗体、Tg抗体阳性。GD的特异性抗体TSAb来源于IgG1亚类,选择性的由Th1细胞激活[16],Th1细胞还可通过分泌IL-10刺激B细胞产生抗体TSAb[17]。另一方面,TPO抗体和Tg抗体部分来源于IgG4,后者由Th2细胞因子激活,提示Th2细胞也参与了HT的病理过程[18]。这些结果提示Th1、Th2细胞可能是GD与HT之间相互转化的重要桥梁因素。
Eshaghkhani等[19]研究了GD患者中编码Th1和Th2分化的主要调控因子(T-BET和GATA3),及重要细胞因子(IFN-γ和IL-4)的表达水平,结果显示T-BET和IFN-γ表达水平显著升高,而GATA3和IL-4表达水平下调,该研究结果表明,Th1/Th2失衡可能参与了GD的发病机制。
1.2 Th17淋巴细胞在AITD中的作用
Th17淋巴细胞是以产生IL-17为特征的一类淋巴细胞,可强化自身免疫反应,在AITD的发生发展中起到重要作用[20]。Th17淋巴细胞分泌释放IL-17A、IL-17F、IL-21、IL-22,可显著增强其他炎性因子(如IL-1β、TNF-α等)的作用,并激活血管内皮细胞、成纤维细胞、巨噬细胞,导致自身免疫损伤[21]。AITD患者体内IL-21、IL-22水平明显升高[22-23]。Liu等[24]实验发现可调节Th17功能的分子有瘦素(直接影响幼稚T细胞)和GITRL(糖皮质激素诱导的肿瘤坏死因子受体配体,与Th17细胞水平呈正相关)等;同时还观察到HT患者的Th17细胞水平升高,由此推测Th17细胞拮抗剂如IL-23、IL-17、IL-6R单克隆抗体或者细胞因子阻断剂,具有治疗AITD患者的应用前景。
1.3 Treg细胞在AITD中的作用
Treg细胞主要负责维持免疫耐受和免疫抑制功能。根据细胞表面分子的不同分成不同亚类,现已发现7类:天然型Treg、诱导型Treg、外周型Treg、Tr1型Treg、Th3型Treg、CD8+Treg和CD69+Treg[5,22,25]。
叉头盒蛋白3(forkhead box P3,FoxP3)是Treg细胞的标志分子,在Treg细胞的分化、稳定性及功能方面发挥着重要作用[26],FoxP3基因多态性与AITD相关[27],AITD患者存在FoxP3功能障碍[28]。Kanamori等[29]发现如果Foxp3表达不稳定,可产生如IL-2、TNF-α、IFN-γ或IL-4等细胞因子,影响Treg细胞的稳定性。寻找维持Tregs稳定的方法,也是AITD的治疗方向之一。
CD25主要介导IL-2信号传导[30],其基因遗传改变可扰乱Treg细胞功能及外周免疫耐受的充分成熟。细胞毒性T细胞相关抗原4(CTLA-4)是一种跨膜蛋白,局限表达于CD25+T细胞表面[31-32],在Tregs的表面与其配体CD80和CD86相结合,竞争CD28(使T细胞充分激活的信号蛋白),从而减少T细胞活化,减少IL-2的产生并阻碍T细胞进一步激活[33]。CTLA-4單克隆抗体可抑制反应性T细胞表达,发挥免疫抑制功能[34]。
2 AITD中B细胞的作用机制研究
B细胞主要代表体液免疫,由造血干细胞发育而来,在骨髓中成熟,然后在次级淋巴器官中激活,如淋巴结和脾脏[35]。B细胞主要产生抗体,而它们本身也是抗原提呈细胞之一,它们有跨膜受体,称为BCR,能识别特异性的抗原,将其提呈给辅助性T细胞[36],辅助性T细胞反过来也可以激活B细胞。
2.1 B细胞在AITD中的体液免疫机制
B细胞免疫耐受缺陷是GD发病的重要机制之一,GD患者体内B细胞被激活,产生TSH受体抗体TRAb,其中刺激性抗体TSAb与甲状腺滤泡上皮细胞膜上TSH受体结合后,导致甲状腺滤泡细胞的不断增殖,引起甲状腺肿大,并促使三碘甲腺原氨酸(T3)、甲状腺素(T4)的生成和分泌增多,导致甲亢,这是GD发生的核心病理机制。GD患者甲状腺局部可见大量B细胞的浸润[37-38],B细胞信号转导异常活跃,记忆性B细胞大量产生和成熟[39]。B细胞激活因子(BAFF)和B细胞增殖诱导配体(APRIL)是B细胞存活的两个重要细胞因子,阻断BAFF和B细胞成熟抗原(BCMA)可减轻GD模型小鼠甲状腺肿大程度[40]。Hong等[41]研究发现采用CD20单克隆抗体(如利妥昔单抗)治疗可抑制甲状腺的B细胞激活,改善甲状腺相关眼病患者的临床症状,这些研究均提示B细胞在GD发生发展中起到关键作用[42]。
尽管在HT中B细胞的作用不及T细胞,但是B细胞可产生TgAb、TPOAb,激活CD8+T细胞和巨噬细胞,损伤甲状腺滤泡上皮细胞,抗体依赖的细胞介导的细胞毒作用是HT的主要病理机制[43]。
2.2 Breg细胞在AITD中的作用
Rosser等[38]研究发现分泌IL-10的B细胞具有免疫抑制作用,称其为调节性B细胞(Breg细胞),其机制可能包括产生IL-10、TGF-α、Fas-Ligand以及TNF相关的细胞凋亡诱导配体等[43-44]。Breg细胞分化形成的主要条件不是Breg细胞谱系特异性因子的表达,而是由B细胞所处的环境所诱导[38],未成熟B细胞、成熟B细胞或浆母细胞,都可以分化为Breg细胞。B细胞若长期暴露在高浓度的炎性细胞因子环境中,可导致Breg数量减少,不利于外周免疫耐受[44]。Miyagaki等[45]发现微生物群在Breg细胞的产生中也发挥着一定作用,抗生素治疗后的小鼠,其Breg细胞数量减少。
Breg細胞能改变T细胞分化,并能调控Treg细胞的生成。B细胞缺陷的小鼠,Treg细胞的数量大幅减少。Breg细胞可通过IL-10抑制Th1免疫反应,也能通过抑制树突状细胞来间接抑制Th1、Th17细胞分化[38,46]。Breg细胞产生TGF-β可诱导CD8+T细胞无能及CD4+效应T细胞凋亡。GD患者与健康人群比较,Breg细胞显著减少,提示Breg细胞对控制甲状腺自身免疫反应有重要作用[47],是极具潜力的AITD治疗靶点。
3 结语
T细胞和B细胞在AITD的发生发展过程中发挥着重要的免疫介导或免疫抑制作用,如何调控并恢复免疫平衡是治疗AITD的难点,越来越多的研究聚焦于T、B细胞在AITD中的免疫功能研究,以探寻治疗AITD的有效方法。
[参考文献]
[1] Pyzik A,Grywalska E,Matyjaszek-Matuszek B,et al. Immune disorders in Hashimoto′s thyroiditis:what do we know so far? [J]. J Immunol Res,2015,2015:979167.
[2] Carlé A,Pedersen IB,Knudsen N,et al. Epidemiology of subtypes of hyperthyroidism in Denmark:a population-based study [J]. Eur J Endocrinol,2011,164(5):801-809.
[3] Volpé R,Iitaka M. Evidence for an antigen-specific defect in suppressor T-lymphocytes in autoimmune thyroid disease [J]. Exp Clin Endocrinol,1991,97(2/3):133-138.
[4] Tanda ML,Piantanida E,Lai A,et al. Thyroid autoimmunity and environment [J]. Horm Metab Res,2009,41(6):436-442.
[5] Rydzewska M,Jaromin M,Pasierowska IE,et al. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases [J]. Thyroid Res,2018,11:2.
[6] Yang Q,Jeremiah Bell J,Bhandoola A. T-cell lineage determination [J]. Immunol Rev,2010,238(1):12-22.
[7] Romagnani S. Regulation of the T cell response [J]. Clin Exp Allergy,2006,36(11):1357-1366.
[8] J?覿ger A,Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation [J]. Scand J Immunol,2010,72(3):173-184.
[9] Mosmann TR,Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties [J]. Annu Rev Immunol,1989,7:145-173.
[10] Ochs HD,Oukka M,Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases [J]. J Allergy Clin Immunol,2009,123(5):977-983,quiz 984-985.
[11] Ohkura N,Kitagaua Y,Sakaguchi S. Development and maintenance of regulary T cells [J]. Immunity,2013,38(3):414-423.
[12] Van Parijs L,Abbas AK. Homeostasis and self-tolerance in the immune system:turning lymphocytes off [J]. Science,1998,280(5361):243-248.
[13] Ben-Skowronek I,Szewczyk L,Kulik-Rechberger B,et al. The differences in T and B cell subsets in thyroid of children with Graves′ disease and Hashimoto's thyroiditis [J]. World J Pediatr,2013,9(3):245-250.
[14] Kraiem Z,Baron E,Kahana L,et al. Changes in stimulating and blocking TSH receptor antibodies in a patient undergoing three cycles of transition from hypo to hyper-thyroidism and back to hypothyroidism [J]. Clin Endocrinol(Oxf),1992,36(2):211-214.
[15] Chardès T,Chapal N,Bresson D,et al. The human anti-thyroid peroxidase autoantibody repertoire in Graves' and Hashimoto′s autoimmune thyroid diseases [J]. Immunogenetics,2002,54(3):141-157.
[16] Michalek K,Morshed SA,Latif R,et al. TSH receptor autoantibodies [J]. Autoimmun Rev,2009,9(2):113-116.
[17] Le?觟vey A,Nagy E,Balazs G,et al. Lymphocytes resided in the thyroid are the main source of TSH-receptor antibodies in Basedow′s-Graves′ disease? [J]. Exp Clin Endocrinol,1992,99(3):147-150.
[18] Rapoport B,Mclachlan SM. Graves′ hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease [J]. J Clin Endocrinol Metab,2014,99(11):4060-4061.
[19] Eshaghkhani Y,Sanati MH,Nakhjavani M,et al. Disturbed Th1 and Th2 balance in patients with Graves′ disease [J]. Minerva Endocrinol,2016,41(1):28-36.
[20] Amatya N,Garg AV,Gaffen SL. IL-17 Signaling:The Yin and the Yang [J]. Trends Immunol,2017,38(5):310-322.
[21] Wilson NJ,Boniface K,Chan JR,et al. Development,cytokine profile and function of human interleukin 17-producing helper T cells [J]. Nat Immunol,2007,8(9):950-957.
[22] González-Amaro R,Marazuela M. T regulatory(Treg)and T helper 17(Th17)lymphocytes in thyroid autoimmunity [J]. Endocrine,2016,52(1):30-38.
[23] Song RH,Yu ZY,Qin Q,et al. Different levels of circulating Th22 cell and its related molecules in Graves' disease and Hashimoto′s thyroiditis [J]. Int J Clin Exp Pathol,2014,7(7):4024-4031.
[24] Liu Y,Tang X,Tian J,et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto's thyroiditis [J]. Int J Mol Sci,2014,15(12):21674-21686.
[25] Cortés JR,Sánchez-Díaz R,Bovolenta ER,et al. Maintenance of immune tolerance by Foxp3+ regulatory T cells requires CD69 expression [J]. J Autoimmun,2014,55:51-62.
[26] Allan SE,Passerini L,Bacchetta R,et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs [J]. J Clin Invest,2005,115(11):3276-3284.
[27] Inoue N,Watanabe M,Morita M,et al. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases [J]. Clin Exp Immunol,2010,162(3):402-406.
[28] Mao C,Wang S,Xiao Y,et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves′ disease [J]. J Immunol,2011,186(8):4734-4743.
[29] Kanamori M,Nakatsukasa H,Okada M,et al. Induced Regulatory T Cells:Their Development,Stability,and Applications [J]. Trends Immunol,2016,37(11):803-811.
[30] Cerosaletti K,Schneider A,Schwedhelm K,et al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi)T cells of type 1 diabetic and multiple sclerosis patients [J]. PLoS One,2013, 8(12):e83811.
[31] Maloy KJ,Powrie F. Regulatory T cells in the control of immune pathology [J]. Nat Immunol,2001,2(9):816-822.
[32] Levings MK,Sangregorio R,Roncarolo MG. Human cd25(+)cd4(+)t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function [J]. J Exp Med,2001,193(11):1295-1302.
[33] Vandenborre K,Van Gool SW,Kasran A,et al. Interaction of CTLA-4(CD152)with CD80 or CD86 inhibits human T-cell activation [J]. Immunology,1999,98(3):413-421.
[34] Sakaguchi S,Wing K,Onishi Y,et al. Regulatory T cells:how do they suppress immune responses? [J]. Int Immunol,2009,21(10):1105-1111.
[35] Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors [J]. Immunol Rev,2010,238(1):37-46.
[36] Kambayashi T,Laufer TM. Atypical MHC class Ⅱ-expressing antigen-presenting cells:can anything replace a dendritic cell? [J]. Nat Rev Immunol,2014,14(11):719-730.
[37] Kuklina EM,Smirnova EN,Nekrasova IV,et al. Role of B cells in presentation of autoantigens to CD4(+)T cells in patients with autoimmune thyroiditis [J]. Dokl Biol Sci,2015,464:263-266.
[38] Rosser EC,Mauri C. Regulatory B cells:origin,phenotype,and function [J]. Immunity,2015,42(4):607-612.
[39] Morshed SA,Davies TF. Graves′ Disease Mechanisms:The Role of Stimulating,Blocking,and Cleavage Region TSH Receptor Antibodies [J]. Horm Metab Res,2015,47(10):727-734.
[40] Gilbert JA,Kalled SL,Moorhead J,et al. Treatment of autoimmune hyperthyroidism in a murine model of Graves′ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology [J]. Endocrinology,2006,147(10):4561-4568.
[41] Hong SH,Braley-Mullen H. Follicular B cells in thyroids of mice with spontaneous autoimmune thyroiditis contribute to disease pathogenesis and are targets of anti-CD20 antibody therapy [J]. J Immunol,2014,192(3):897-905.
[42] Salvi M. Immunotherapy for Graves′ ophthalmopathy [J]. Curr Opin Endocrinol Diabetes Obes,2014,21(5):409-414.
[43] Kristensen B,Hegedüs L,Lundy SK,et al. Characterization of Regulatory B Cells in Graves′ Disease and Hashimoto′s Thyroiditis [J]. PLoS One,2015,10(5):e0127949.
[44] Maravillas-Montero JL,Acevedo-Ochoa E. Human B Regulatory Cells:The New Players in Autoimmune Disease [J]. Rev Invest Clin,2017,69(5):243-246.
[45] Miyagaki T,Fujimoto M,Sato S. Regulatory B cells in human inflammatory and autoimmune diseases:from mouse models to clinical research [J]. Int Immunol,2015,27(10):495-504.
[46] Kristensen B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls [J]. Dan Med J,2016,63(2).
[47] Qin J,Zhou J,Fan C,et al. Increased Circulating Th17 but Decreased CD4(+)Foxp3(+)Treg and CD19(+)CD1d(hi)CD5(+)Breg Subsets in New-Onset Graves' Disease [J]. Biomed Res Int,2017,2017:8431838.
(收稿日期:2019-02-26 本文編辑:张瑜杰)