毛文姣 张红梅
[摘要] 肠道微生物群的改变被认为肠易激综合征(IBS)发病机制的病因。肠道菌群-免疫失调导致肠道微环境的改变,诱发肠道的低度炎症。肠道碱性磷酸酶(IAP)通常能保护宿主免受肠道炎症和主要在结肠内的组织损伤,是维持肠道内环境稳定所必需的重要黏膜防御因子,被认为是肠道微生物群组成的潜在调节器。基于此,IAP相关通路可能是阐明针刺对肠道菌群-免疫稳定作用分子生物学机制的新切入点,促进对从脾论治与调控肠道菌群关系的认识,丰富中医从脾论治的科学内涵。
[关键词] 肠易激综合征;肠道微生物;肠道碱性磷酸酶;肠道菌群-免疫失调
[中图分类号] R246.1 [文献标识码] A [文章编号] 1673-7210(2019)10(a)-0126-04
Based on intestinal alkaline phosphatase signaling pathway to discuss the mechanism of acupuncture maintaining intestinal flora-immune stability
MAO Wenjiao1 ZHANG Hongmei2
1.Department of Acupuncture, the Second Hospital of Nanjing, Jiangsu Province, Nanjing 210003, China; 2.Department of Clinical Testing Center, the Second Hospital of Nanjing, Jiangsu Province, Nanjing 210003, China
[Abstract] The alteration of intestinal microflora is considered to be the cause of the pathogenesis of Irritable bowel syndrome (IBS). Intestinal flora-immune disorders lead to changes in the intestinal microenvironment, which induce low-grade inflammation of the intestines. Intestinal alkaline phosphatase (IAP) considered as a potential regulator of intestinal microflora, protects the host from intestinal inflammation and tissue damage mainly in the colon, while is an important mucosal defense factor necessary to maintain the stability of the intestinal environment. Based on the above poinits, IAP-related pathway may be a new entry point to elucidate the molecular biological mechanism of acupuncture on intestinal flora-immune stability, to promote the understanding of the relationship between treatment from spleen and regulation of intestinal flora, and to enrich the scientific connotation of treatment from spleen in Chinese medicine.
[Key words] Irritable bowel syndrome; Intestinal microbiota; Intestinal alkaline phosphatase; Intestinal flora-immune disorders
肠道菌群-免疫异常导致多种疾病,肠易激综合征(irritable bowel syndrome,IBS)是最常见的由肠道菌群异常引起的胃肠病之一,肠道菌群-免疫失调导致肠道微环境的改变,诱发肠道的低度炎症[1]。肠道微生物群的改变被认为是IBS发病机制的病因[2]。中医理论认为,肠道微生態平衡是脾主运化的主要生理特征,肠道菌群失调和中医脾失健运互为因果。肠道炎症破坏肠道内平衡,并引起免疫介导的组织损伤。肠道碱性磷酸酶(intestinal alkaline phosphatase,IAP)是一种在肠道中表达的内源性蛋白质,被认为是一种免受定植细菌损伤的保护机制。IAP活性通常能保护宿主免受肠道炎症和主要在结肠内的组织损伤。IAP是维持肠道内环境稳定所必需的重要黏膜防御因子[3]。IAP被认为是肠道微生物群组成的潜在调节器[4]。越来越多的研究显示,IAP缺乏是肠道炎症性疾病发病的主要原因[5-7]。IAP缺乏会自发增加未感染动物肠道组织中的炎性细胞因子,包括白细胞浸润、上皮层不连续等,并且能诱导杯状细胞数量减少[8]。基于前期研究基础,推测IAP相关通路可能是阐明针刺对肠道菌群-免疫调节的分子生物学机制新的切入点,能提高从脾论治与调控肠道菌群关系的认识,丰富中医从脾论治的科学内涵。
1 IAP在肠道菌群-免疫中起重要作用
1.1 IAP是维持肠道稳态必需的肠黏膜防御因子
IAP是一种经糖基磷脂酰肌醇键锚定于肠上皮细胞顶膜上的糖蛋白,位于十二指肠肠细胞刷状缘的顶端微绒毛表面,通过磷脂酶活性释放到肠腔中,并通过肠道进入结肠。胃肠道IAP的主要功能之一是调节十二指肠表面的碳酸氢盐分泌和酸碱度,调节肠道长链脂肪酸(LCFA)的吸收,以及内毒素脂多糖(LPS)的解毒作用,产生局部肠道和全身抗炎作用。IAP是肠内营养维持的肠黏膜防御因子[9]。人类重组IAP目前正在进行临床试验的第2阶段,清楚地表明该酶在治疗降低GI疾病中的重要性[10]。当IAP敲除小鼠肠受到缺血性损伤时,观察到细菌向肠系膜淋巴结转位的增加[11]。另一项研究中,确定了IAP可以正向调节肠道微生物组的机制,即肠腔中磷酸化核苷酸的失活[12]。他们观察到IAP敲除小鼠的管腔内容物中的腺者三磷酸ATP比野生型小鼠更多[13]。此外,外源性IAP能够逆转ATP介导的细菌生长抑制[12,14]。在小鼠中施用外源性IAP显示鼠伤寒沙门菌和艰难梭菌相关疾病活动的严重程度降低,IAP具有快速恢复肠道正常微生物群的能力[15]。
1.2 IAP影响菌群结构与功能
肠道黏膜免疫由获得性免疫和固有免疫两部分组成。浆细胞产生和释放的大量分泌型免疫球蛋白A(sIgA)是肠黏膜获得性免疫的主要效应分子,潘氏细胞分泌的多种抗菌肽和杯状细胞分泌的黏蛋白是固有免疫的主要活性成分[16]。IAP作为在肠道中表达的内源性蛋白质,通过以下途径影响肠道免疫、调控菌群。
1.2.1 IAP→MUC2→肠道菌群 黏蛋白起作用在保护肠道屏障功能方面的重要作用[17]。IAP活性与黏蛋白显著相关。MUC2缺乏导致IAP表达和脂多糖(LPS)解毒活性受损,缺乏导致肠道菌群易位、肠道菌群稳态失调并诱发炎性反应[18]。
1.2.2 IAP→ZO-1→肠道菌群 肠道碱性磷酸酶是肠黏膜通透性的主要调节剂,是紧密连接蛋白(TJS)如ZO-1、claudin-1、claudin-2水平和紧密连接形成的关键调节因子[19]。研究发现,人类细胞中较高的IAP水平与ZO-1和ZO-2的表达增加有关,并且在动物研究中得到了相似的结果[20]。TJS是肠屏障最重要的组成部分,它负责维持无菌环境[21]。在这种微环境不平衡或屏障失效的情况下,细菌或细菌产品进入肠道的易位将激活免疫细胞并触发炎性反应。
1.2.3 IAP→sIgA→肠道菌群 sIgA是肠腔微生态中重要的免疫球蛋白,在维护肠腔内环境平衡中具有不可替代的作用。sIgA可很大程度地耐受肠腔内的菌群蛋白酶,可以适当改善肠腔菌群的组成和维持内环境稳态。此外,结合分泌片后的IgA具有抵抗酶类降解的优势,这对于其在肠道中发挥更大免疫活性提供了便利。研究发现,IAP参与肠道特异性IgA产生和分泌,口服IAP补充剂对肠道持续分泌sIgA有深远影响[22-23]。IAP功能缺失或被抑制等异常状态下可见肠道菌群失调、肠道抗炎及自我修复功能受损。
2 去磷酸化LPS参与肠黏膜免疫屏障功能的维护和调节
2.1 肠道炎症中去唾液酸化加速了IAP糖蛋白内化和缺乏
IAP缺乏是肠道炎症发生的主要因素。在没有感染的情况下,附着在肠细胞表面新生IAP上的聚糖逐渐去唾液酸化。肠道炎症发生时去唾液酸化的发生促进了肠细胞内IAP分子老化,加速了IAP的降解速度。一种由革兰阴性肠伤寒沙门菌反复出现的低度非致死性感染,导致了小鼠肠道组织的炎症发生,这种抗炎机制主要在结肠内起作用,但依赖于小肠十二指肠上皮细胞产生和释放IAP,在发生ST感染时显著增加了IAP脱唾液的基本速率,同时伴有肠细胞IAP内化和降解的增加[8]。体外实验研究证实在清除了多种感染的小鼠肠细胞样本中,肠细胞表面IAP半衰期的显著降低和培养基中IAP的丰度降低,并且早期内体和溶酶体IAP标志物增加与细胞表面IAP丰度降低相一致[8]。
2.2 TLR4/MyD88/NF-κB相关信号通路是IAP调控重要信号途径之一
先天免疫系统利用模式识别受体(PRRs),主要是Toll样受体(TLRs),对细菌入侵提供主要宿主反应。LPS是革兰阴性细菌外膜的外部脂质层,它是构成哺乳动物肠道微生物群的重要组成部分[24]。在脊椎动物中,这些磷酸盐对于LPS与TLR4/MD-2先天免疫受体复合物的结合[25],NF-κB信号传导的起始和免疫应答诱导是重要的[26-27]。IAP可以将LPS的脂质-A部分去磷酸化为无毒形式,破坏LPS内毒素与TLR4信号传导并抑制细胞因子的产生。IAP的缺失会导致更高的LPS流入系统循环,LPS的全身易位会引发过度的炎性反应,最终通过肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1、IL-6、IL-8和IL-12等促炎細胞因子[28-29]诱导败血症性休克。如果免疫反应严重但免疫水平较低[1],它也可刺激与慢性炎症性疾病相关的轻度慢性炎性反应[30-31]。IAP可能是针刺维持肠道菌群-免疫稳态的关键靶点和重要机制。
3.1 电针可以改善肠道微生物的多样性,修复肠道有益菌定植抗力
针灸在近年来治疗IBS中效果显著,研究发现,电针可以改善肠道微生物的多样性,恢复肠道稳态。研究中对25例IBS患者的粪便菌群进行16srDNA测序,通过与健康人比较发现IBS患者肠道菌群微生物多样性下降、结构异常。电针治疗后IBS患者肠道微生物的多样性增加,菌群失调情况改善,厚壁菌门/拟杆菌门比值降低,其余各水平失调菌群的相对丰富度普遍趋于正常,患者症状改善与菌群相对丰度变化存在相关性[32]。
3.2 针刺对TLR2/4-MyD88-NF-κB信号通路良性调节,参与肠道免疫应答
腸道免疫功能紊乱是IBS发病主要机制之一,细胞因子的异常表达与免疫系统的紊乱密切相关[33]。最新一项研究[34]评估了IBS-D患者针刺干预前后IBS患者血清TLR4、Myd88、NF-κB相关生物活性物质,发现IBS-D患者血清TLR4、Myd88、NF-κB水平明显高于健康对照组。经针刺干预后,TLR4、Myd88、NF-κB水平下降,差异有统计学意义(P < 0.05)。
4 展望与思考
基于前期研究基础及国内外最新研究进展,我们提出了“电针对肠道菌群-免疫的稳定作用是通过调节IAP相关通路实现的”的科学假说。未来的研究可从3个层次逐渐深入:①通过异种移植实验建立肠道菌群免疫失衡IBS小鼠模型,证实IBS菌群失调状态加速了IAP糖蛋白内化和缺乏,导致肠屏障功能障碍及促炎因子释放;②通过基因敲除技术获得IAP-/-小鼠,观察IAP在IBS肠道菌群-免疫失衡性的重要作用,探讨电针对IAP的干预作用及调控途径的机制研究,证实IAP相关通路可能是针刺维持肠道稳态的关键途径之一;③通过扩大样本量、多中心合作方式阐明IAP相关通路在IBS发病中的作用,有助于阐明针灸作用基础及作用机制。从以上3个层面验证电针可以提高IAP活性,发挥对内毒素脂多糖的解毒作用,调节肠道菌群,调节肠屏障功能,恢复肠道菌群-免疫的稳定作用。为针灸治疗IBS提供新的科学依据,进一步丰富针灸传统理论的科学内涵。
[参考文献]
[1] Drossman DA. Functional Gastrointestinal Disorders:History,Pathophysiology,Clinical Features and Rome Ⅳ [J]. Gastroenterology,2016,150(6):1262-1279.
[2] Su T,Liu R,Lee A,et al. Altered Intestinal Microbiota with Increased Abundance of Prevotella Is Associated with High Risk of Diarrhea-Predominant Irritable Bowel Syndrome [J]. Gastroenterol Res Pract,2018,2018:6961783.
[3] Lalles JP. Intestinal alkaline phosphatase:multiple biological roles in maintenance of intestinal homeostasis and modulation by diet [J]. Nutr Rev,2010,68(6):323-332.
[4] Fawley J,Koehler S,Cabrera S,et al. Intestinal alkaline phosphatase deficiency leads to dysbiosis and bacterial translocation in the newborn intestine [J]. J Surg Res,2017,218:35-42.
[5] Martinez-Moya,P,Ortega-Gonzalez,M,Gonzalez,R,et al. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats [J]. Pharmacol Res,2012,66(2):144-153.
[6] Alpers DH,Zhang Y,Ahnen DJ. Synthesis and parallel secretion of rat intestinal alkaline phosphatase and a surfactant-like particle protein [J]. Am J Physiol,1995,268(6 PT 1):E1205-E1214.
[7] Goldberg RF,Austen WG Jr,Zhang X,et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition [J]. Proc Natl Acad Sci USA,2008,105(9):3551-3556.
[8] Yang WH,Heithoff DM,Aziz PV,et al. Recurrent infection progressively disables host protection against intestinal inflammation [J]. Science,2017,358(6370):eaao5610.
[9] Lalles JP. Intestinal alkaline phosphatase: novel functions and protective effects [J]. Nutr Rev,2014,72(2):82-94.
[10] Fawley J,Gourlay DM. Intestinal alkaline phosphatase:a summary of its role in clinical disease [J]. J Surg Res,2016,202(1):225-234.
[11] Goldberg RF,Austen WJ,Zhang X,et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition [J]. Proc Natl Acad Sci USA,2008,105(9):3551-3556.
[12] Malo MS,Moaven O,Muhammad N,et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates [J]. Am J Physiol Gastrointest Liver Physiol,2014, 306(10):G826-G838.
[13] Bates JM,Akerlund J,Mittge E,et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota [J]. Cell Host Microbe,2007,2(6):371-382.
[14] Lalles JP. Luminal ATP:the missing link between intestinal alkaline phosphatase,the gut microbiota,and inflammation? [J]. Am J Physiol Gastrointest Liver Physiol,2014,306(10):G824-G825.
[15] Alam SN,Yammine H,Moaven O,et al. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens [J]. Ann Surg,2014,259(4):715-722.
[16] Heneghan AF,Pierre JF,Kudsk KA. JAK-STAT and intestinal mucosal immunology [J]. JAKSTAT,2013,2(4):e25530.
[17] Deplancke B,Gaskins HR. Microbial modulation of innate defense:goblet cells and the intestinal mucus layer [J]. Am J Clin Nutr,2001,73(6):1131S-1141S.
[18] Cobo ER,Kissoon-Singh V,Moreau F,et al. Colonic MUC2 mucin regulates the expression and antimicrobial activity of beta-defensin 2 [J]. Mucosal Immunol,2015,8(6):1360-1372.
[19] Liu W,Hu D,Huo H,et al. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels [J]. J Am Coll Surg,2016,222(6):1009-1017.
[20] Hamarneh SR,Mohamed MM,Economopoulos KP,et al. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement [J]. Ann Surg,2014,260(4):706-715.
[21] Fries W,Belvedere A,Vetrano S. Sealing the broken barrier in IBD:intestinal permeability,epithelial cells and junctions [J]. Curr Drug Targets,2013,14(12):1460-1470.
[22] Wang D,Zhou X,She R,et al. Impaired intestinal mucosal immunity in specific-pathogen-free chickens after infection with very virulent infectious bursal disease virus [J]. Poult Sci,2009,88(8):1623-1628.
[23] Chen Z,Xie J,Wang B,et al. Effect of gamma-aminobutyric acid on digestive enzymes,absorption function,and immune function of intestinal mucosa in heat-stressed chicken [J]. Poult Sci,2014,93(10):2490-2500.
[24] Yang Y,Wandler AM,Postlethwait JH,et al. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates [J]. Front Immunol,2012,3:314.
[25] Park BS,Song DH,Kim HM,et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex [J]. Nature,2009,458(7242):1191-1195.
[26] Yamamoto M,Akira S. Lipid A receptor TLR4-mediated signaling pathways [J]. Adv Exp Med Biol,2010,667:59-68.
[27] Huhta H,Helminen O,Kauppila JH,et al. The Expression of Toll-like Receptors in Normal Human and Murine Gastrointestinal Organs and the Effect of Microbiome and Cancer [J]. J Histochem Cytochem,2016,64(8):470-482.
[28] Fawley J,Gourlay DM. Intestinal alkaline phosphatase:a summary of its role in clinical disease [J]. J Surg Res,2016,202(1):225-234.
[29] Dolowschiak T,Mueller AA,Pisan LJ,et al. IFN-gamma Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection [J]. Cell Host Microbe,2016,20(2):238-249.
[30] Estaki M,Decoffe D,Gibson DL. Interplay between intestinal alkaline phosphatase,diet,gut microbes and immunity [J]. World J Gastroenterol,2014,20(42):15650-15656.
[31] Gunnarsson J,Simren M. Peripheral factors in the pathophysiology of irritable bowel syndrome [J]. Dig Liver Dis,2009,41(11):788-793.
[32] 徐萬里.基于肠道菌群-SCFAs-宿主互动理论探讨“调神健脾”针法对IBS-D患者内脏高敏感调节机制[D].南京:南京中医药大学,2016.
[33] 李丹丹.基于TLR2/4-MYD88-NF-κb信号通路研究调神健脾针刺法治疗腹泻型肠易激综合征的机制[D].南京:南京中医药大学,2018.
[34] 梁世杰.调神健脾针刺法对腹泻型肠易激综合征患者下丘脑-垂体-肾上腺轴的影响[D].南京:南京中医药大学,2017.
(收稿日期:2019-06-25 本文编辑:王晓晔)