各向异性和非均质性对煤层抽采钻孔瓦斯渗流的影响作用机制

2019-09-10 03:57宋浩然林柏泉赵洋
关键词:瓦斯抽采数值模拟

宋浩然 林柏泉 赵洋

摘 要:为提高深部煤层瓦斯抽采效率,研究抽采钻孔周围煤体的瓦斯渗流规律十分关键。文中基于煤体的各向异性和非均质性,考虑煤体应力变形场和瓦斯渗流场的交叉耦合作用,分析了煤层抽采中水力割缝钻孔周围瓦斯压力以及渗透率的时空演化规律。结果表明:煤体的各向异性和非均质性影响割缝钻孔周围的瓦斯渗流规律。对于瓦斯压力的变化,平行层理方向瓦斯压力降幅大于垂直层理方向,抽采影响范围分布呈现“椭圆形”,煤体各向异性表征明显。对于渗透率的变化,平行层理方向的煤层渗透率高于垂直层理方向,抽采初期渗透率的增加幅度较快,随后逐渐减缓,渗透率变化曲线呈现不规则“锯齿形”,煤体非均质性表征明显。将数值模拟结果与杨柳矿4#钻场瓦斯抽采的实际监测情况相互对比,现场实测的瓦斯抽采情况与模拟得到情况基本吻合,从而验证了数值模拟的合理性及工程适用性。

关键词:瓦斯抽采;非均质性;各向异性;多场耦合;数值模拟

中图分类号:TD 823 文献标志码:A

DOI:10.13800/j.cnki.xakjdxxb.2019.0311 文章编号:1672-9315(2019)03-0461-08

Abstract:In order to improve  gas drainage efficiency of deep coal seams,it is very important to study the gas seepage law of coal bodies around the extraction borehole.Based on the anisotropy and heterogeneity of coal body,considering the cross-coupling effect of coal stress-deformation field and gas seepage field,the space-time evolution law of gas pressure and permeability around the borehole in the extraction process was analyzed.The results show that the anisotropy and heterogeneity of the coal affect the gas flow law around the borehole.For the change of gas pressure,the gas pressure decrease in the parallel bedding direction is larger than that in the vertical bedding direction,and the distribution of the influence range of the extraction is “elliptic”,and the anisotropy of the coal body is obviously characterized.For the change of permeability,the permeability of coal seam in parallel bedding direction is higher than that of vertical bedding.The increase of permeability in the initial stage of extraction is faster,and then gradually slows down.The curve of permeability shows irregular “zigzag” and coal body heterogeneity is clearly characterized.The numerical simulation results were compared with the actual monitoring situation of the gas drainage in the 4# drilling site of Yangliu Mine.The actual gas extraction in the field is basically consistent with the simulated situation,which verifies the rationality of the numerical simulation and the applicability of the engineering practice.Key words:gas drainage;heterogeneity;anisotropy;multiphysics coupling;numerical simulation

0 引 言

我國深部煤层瓦斯普遍具有高地应力、高瓦斯压力、高瓦斯含量以及低渗透性特征

[1-2],各种复杂因素使得当前煤矿开采和瓦斯抽采难度较大,矿山安全生产受到严重威胁[3]。瓦斯是引起矿井动力灾害的主要因素之一,容易导致煤矿发生爆炸和煤与瓦斯突出危险[4]。因此,为了提高瓦斯的资源化利用并减少矿井灾害发生,提高钻孔瓦斯抽采效率十分必要[5]。目前,水力割缝卸压瓦斯抽采技术是实现煤矿井下瓦斯资源化的主要手段之一[6],也是防治瓦斯灾害的重要手段[7]。对此,相关学者已经开展了大量试验研究。Candela等进行了一系列关于渗透率增强机制的试验研究,从微观角度探索了煤层的卸压增透机理[8-9]。尹光志等利用三轴渗透仪对突出煤进行了试验研究,分析了瓦斯压力对渗流的影响作用机制[10]。鲁义等开展了单钻孔和多钻孔协同瓦斯抽采试验,验证了抽采半径与布孔间距关系的正确性[11]。数值模拟是研究低渗透煤层瓦斯抽采的有效方法,许多学者考虑过不同物理场的耦合效应。Lu等建立了钻孔水力压裂后煤层瓦斯流动的多物理场耦合模型,分析了煤层瓦斯压力的变化规律和渗透率的演化规律[12]。Zhou 等建立并模拟了深部煤层的气-固耦合模型,探索了高瓦斯煤矿防止瓦斯突出的有效方法[13]。Wei 等分析了瓦斯抽采过程中有效应力的变化以及煤基质解吸对煤体孔隙度影响的作用机理,建立了渗透率动态演化模型[14]。林柏泉等建立了应力场、渗流场和扩散场多场耦合模型,研究了瓦斯抽采过程中煤层瓦斯流场的演化规律,并结合杨柳煤矿的现场实验数据验证了模型的准确性。煤层渗透率具有各向异性,即煤层平行层理渗透率与垂直层理渗透率存在差异[15]。Anggara等通过实验室测量,证实了煤层平行层理2个方向的渗透率基本相同,而各向异性的主要差异在平行层理和垂直层理2个方向[16]。Tan等研究了煤体的各向异性和非均质性对瓦斯储存的影响机制,实验结果表明煤的非均质性和各向异性对气体扩散行为有显着影响[17]。岳高伟等依据各向异性煤体的渗透率测试结果进行了气-固耦合模拟,得出了平行层理方向抽采效果优于垂直层理的结论[18]。Wang等考虑了煤的各向异性,探究了煤层的各向异性在模拟水平渗透率随压力变化中的作用[19]。目前对于水力割缝煤层瓦斯渗流规律的研究大都是基于煤体各向同性来开展,且对于割缝钻孔周围瓦斯流场的时空演化规律研究较少,因此研究煤体的非均质性和各向异性对水力割缝钻孔瓦斯抽采影响规律是非常必要的。文中基于煤体非均质性和各向异性,建立了考虑煤体应力场和渗流场的单孔与多孔抽采模型,模拟分析了抽采钻孔周围瓦斯流场的时空演化规律。该研究结果可为现场抽采钻孔布置和提高煤层瓦斯的回采率提供依据。

1 数学模型与物理模型

1.1 模型假设煤体瓦斯抽采的流固耦合模型在如下的假设条件下建立。

1)煤体变形处于线弹性变形阶段,服从广义胡克定律;

2)煤层瓦斯为理想气体,且在裂隙中的流动符合达西定律;

3)煤体中的瓦斯流动场稳定变化不大,按照等温流动处理;

4)含瓦斯煤体是由煤基质与裂隙2部分组成,且具有非均质性和各向异性。

1.2 弹性模量的分布函数煤是由多种矿物颗粒、胶结物等组成的混合体,煤体经过复杂的地质演变和构造运动形成结构十分复杂的固体材料[20]。由此可知,煤体的组成单元性质在空间上的分布往往是非均质的。为了表征其非均质性,假定煤体的细观单元的力学性质服从Weibull分布[21],该分布可按如下分布密度函数来定义式中 u为满足Weibull分布的参数数值(如弹性模量、泊松比等);u0为一个与所有单元参数平均值有关的参数;m为Weibull分布的形状参数。

图1为不同均质度系数下细观单元力学性质在煤体空间中的分布情况。根据Weibull分布的基本性质,m越大,材料单元的均质性越好,反之表明单元属性越离散。因此,u0和m被称作材料的分布参数。采用式(1),可在数值模拟中产生煤体材料的非均质性参数,考虑现场煤体的实际力学性质,在前人研究基础上[20-21],综合确定m值取2.0.

1.5 物理模型在COMSOL Multiphysics软件中根据应力场、渗流场相互耦合作用建立2种瓦斯抽采模型:单孔瓦斯抽采模型和多孔瓦斯抽采模型。模型的尺寸分別为20 m×30 m和90 m×120 m.根据现场实测数据设置了边界条件,如图2所示,模型底部为固定约束,煤体左右边界为辊支撑,模型上部岩层压力10 MPa.煤体原始瓦斯压力P0=2 MPa,钻孔抽采负压P=15 kPa.由于水力割缝钻孔周围存在扰动破裂区域,因此煤层钻孔半径设置为0.5 m.从表1可以看出,煤体的平均弹性模量、泊松比和密度等基本参数来自现场实测,其余部分来自前人研究[27]。分别开展了2种情形下的瓦斯流场演化模拟。

2 单孔抽采模拟结果与讨论2.1 煤层的各向异性和非均质性煤的形成经历了长期的地质演变和构造运动,因而煤层的结构十分复杂。如图3所示,煤层的层理结构存在结构异性,这种结构异性特征导致了煤层的渗透率表现出明显的各向异性,煤层平行层理和垂直层理方向的瓦斯流场存在明显差异。根据前人的实验研究可知[18],平行层理方向渗透率约是垂直层理方向渗透率的2~4倍,文中数值模拟选用的煤体平行层理方向初始渗透率为垂直层理方向初始渗透率的3倍。图4是煤层的弹性模量分布图,煤体弹性模量的分布符合Weibull分布,这与煤层的非均质性比较相符。文中数值模拟中弹性模量的分布范围为2.0~3.0 GPa.

图5给出了距钻孔半径2 m煤体渗透率变化。从总体上看,整个极坐标中煤体的渗透率曲线呈现为“不规则椭圆形”。这是因为,在煤体各向异性影响下,平行层理方向煤体的渗透率大于垂直层理方向煤体的渗透率。在煤体非均质性影响下,渗透率曲线的变化不规则。抽采初期,钻孔周围煤体的各向渗透率较小,随着抽采时间增加,煤体的各向渗透率均逐渐增大。这是因为瓦斯压力的降低导致了煤基质的收缩,引起了煤体裂隙宽度的增大,进而渗透率逐渐增大。

2.2 瓦斯抽采空间演化规律图6为煤层瓦斯压力沿着平行层理和垂直层理方向的空间演化规律,整体上看距离抽采钻孔越远,煤层瓦斯压力越大,最终趋于稳定。这是因为随着瓦斯抽采的进行,钻孔周围瓦斯容易抽出,距离钻孔较远的瓦斯较难抽出。随着抽采时间的增加,平行层理方向和垂直层理方向瓦斯压力均逐渐减小。对比平行层理方向图6(a)和垂直层理方向图6(b),可以看出距离钻孔相同的位置(以距离钻孔2 m位置为例),平行层理方向煤层裂隙瓦斯压力从2.0 MPa降为1.68 MPa,降幅较大,而垂直层理方向的瓦斯压力从2.0 MPa降至1.91 MPa,降幅较小。这是因为平行层理方向的渗透率较大,而垂直层理方向的渗透率较小,所以煤层平行层理方向裂隙的瓦斯更容易被抽离。

图7是煤层渗透率沿着平行层理和垂直层理方向的空间演化规律,渗透率曲线表现为不规“锯齿形”,这是煤的非均质性导致的。距离钻孔越远,煤体的渗透率越低,并趋于稳定。这是由于煤层在地应力影响下,钻孔周围存在明显应力集中区,水力割缝钻孔周围扰动区域煤体破碎损伤严重,而距离钻孔中心越远的煤体损伤越小,所以距离抽采孔越近渗透率越大,距离较远的煤体渗透率逐渐减小。抽采时间越久,煤体的渗透率越大。这是由于煤层瓦斯含量不断下降,煤基质收缩,煤体裂隙宽度变大,渗透率增大。对比平行层理方向图7(a)和垂直层理方向图7(b),可知平行层理方向煤体渗透率较大,垂直层理方向煤体渗透率较小,且平行层理方向的渗透率在距离钻孔5 m以后趋于稳定,而垂直层理方向的渗透率在距离钻孔3 m以后趋于稳定。这是因为钻孔周围存在应力集中区,平行层理方向煤体所受应力较大,而垂直层理方向煤体所受应力较小,所以平行层理方向的抽采影响范围较大,垂直层理方向的抽采影响范围较小。

2.3 瓦斯抽采时间演化规律图8给出了各测点瓦斯压力随时间的演化规律。各个测点的瓦斯压力随着抽采时间的增加总体上呈现下降趋势,测点瓦斯压力衰减速度距离钻孔越近衰减速度越快,即P1>P2>P3>P4,P5>P6>P7>P8.以距离钻孔1 m的P1和P5两测点为例,P1测点抽采120 d后瓦斯压力下降为0.4 MPa左右,而P5测点抽采120 d后瓦斯压力下降为0.6 MPa,相同抽采时间下P1测点的瓦斯衰减幅度大于P5,其他各点情况相似,这是因为在抽采过程中煤层内瓦斯总含量是下降趋势,而平行层理方向煤层渗透率大于垂直层理方向的渗透率,距离抽采钻孔相同的位置,平行层理方向煤体裂隙的瓦斯更容易被抽离出煤层。

图9是各个测点渗透率随着时间的演化规律,各点的渗透率随着抽采时间的增加都有明显的上升,并且瓦斯抽采初期煤体渗透率上升速度较快,抽采后期煤体渗透率上升速度较为缓慢稳定。这是因为抽采初期煤体裂隙内瓦斯迅速被抽离,煤基质收缩,进而导致煤体裂隙宽度增大,煤体渗透率快速增加,经过一段时间的抽采,煤层瓦斯含量下降,瓦斯渗流速度减缓,渗透率缓慢增加。将平行层理方向的4个测点和垂直层理方向的4个测点进行对比,可以发现平行层理方向测点的渗透率都大于垂直层理方向的渗透率,并且测点P3的渗透率略小于测点P4,而测点P7的渗透率略大于测点P8.这是由于煤体具有非均质的特性,选取的测点P3和P4两点的煤体力学性质不同,因此煤层存在渗透率变化异常点。

3 多孔抽采模拟与工程验证根据单孔瓦斯抽采模拟结果以及杨柳矿现场实际情况建立了多孔瓦斯抽采模型,为验证数学模型和物理模型的合理性,将模拟中多孔抽采下的煤体抽采率与杨柳矿现场实验所测抽采率进行对比分析。笔者早前对杨柳矿4#钻场进行了现场实验,4#钻场为6列7排共42个水力割缝钻孔,孔间距为6 m.为了分析抽采钻孔的卸压增透效果,监测记录了4#钻场瓦斯抽采纯流量。根据杨柳矿4#钻场的钻孔数量和布置,在COMSOL Multiphysics软件中建立了相同的几何物理模型,根据表1和现场实测数据设置了相同参数,经过模拟计算得到整个钻场的抽采率。图10显示了多孔抽采瓦斯压力分布云图,从图中可以看出钻孔群周围瓦斯压力随抽采时间增加逐渐降低,抽采60d后抽采影响范围呈现为“椭圆形”,平行层理的瓦斯抽采效果优于垂直层理。图11显示了数值模拟与现场实验抽采率的对比分析。从图11可以看出,前十天多孔抽采钻孔模型模拟的抽采率结果與现场监测记录的结果误差较大,为10%左右,这是因为模拟条件较现场条件相对理想,且现场测试存在误差。而十天之后平均误差减小为6%左右,从整体上看,模型模拟的抽采率结果能够预测整体规律,具有良好的拟合性。结果表明所建立的模型是正确的、合理的,验证了该模型的可靠性以及工程适用性,可以对今后现场钻孔的布置和施工提供相应的理论指导。

4 结 论

1)受煤体各向异性的影响,等间距测点的瓦斯压力降幅不同,平行层理方向测点的瓦斯压力下降速度明显快于垂直层理方向。随着瓦斯抽采时间的增加,瓦斯抽采影响范围逐渐增大,瓦斯压力云图呈现“椭圆形”,平行层理方向的瓦斯抽采效果优于垂直层理方向。

2)受煤体非均质性的影响,等间距测点的渗透率曲线呈现“锯齿形”,导致在渗透率的空间演化规律中会出现异常点情况。随着瓦斯抽采时间的增加,煤层瓦斯含量逐渐降低,煤基质收缩,煤体裂隙宽度增加,煤层的渗透率逐渐增大。3)结合杨柳矿4#钻场实际监测数据和多孔协同瓦斯抽采的数值模拟结果,可以得到现场实测的抽采率与模拟得到的抽采率相互吻合,从而验证了所建模型的合理性以及工程适用性。

参考文献(References):

[1] 赵忠明,董 伟,魏国营,等.百米钻孔瓦斯流量数值模拟研究及应用[J].采矿与安全工程学报,2018,35(2):436-441.ZHAO Zhong-ming,DONG Wei,WEI Guo-ying,et al.Numerical simulation study and application of hectometre borehole gas flowrate[J].Journal of Mining and Safety Engineering,2018,35(2):436-441.

[2]ZOU Quan-le,LIN Bai-quan,ZHENG Chun-shan,et al.Novel integrated techniques of drilling-slotting-separation-sealing for enhanced coal bed methane recovery in underground coal mines[J].Journal of Natural Gas Science and Engineering,2015,26:960-973.

[3]袁 亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.YUAN Liang.Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J].Journal of China Coal Society,2016,41(1):1-6.

[4]曹 偈,孙海涛,戴林超,等.煤与瓦斯突出动力效应的模拟研究[J].中国矿业大学学报,2018,47(1):113-120,154.CAO Jie,SUN Hai-tao,DAI Lin-chao,et al.Simulation research on dynamic effect of coal and gas outburst[J].Journal of China University of Mining & Technology,2018,47(1):113-120,154.

[5]季淮君,李增华,杨永良,等.基于瓦斯流场的抽采半径确定方法[J].采矿与安全工程学报,2013,30(6):917-921.JI Huai-jun,LI Zeng-hua,YANG Yong-liang,et al.Drainage radius measurement based on gas flow field[J].Journal of Mining and Safety Engineering,2013,30(6):917-921.

[6]林柏泉,赵 洋,刘 厅,等.水力割缝煤体多场耦合响应规律研究[J].西安科技大学学报,2017,37(5):662-667.LIN Bai-quan,ZHAO Yang,LIU Ting,et al.Coupling response law of multi-field in coal seam after hydraulic slotting[J].Journal of Xi’an University of Science and Technology,2017,37(5):662-667.

[7]肖峻峰,樊世星,卢 平,等.近距离高瓦斯煤层群倾向高抽巷抽采卸压瓦斯布置优化[J].采矿与安全工程学报,2016,33(3):564-570.XIAO Jun-feng,FAN Shi-xing,LU Ping,et al.Layout parameter optimization of highly-located drainage roadway along seam for controlling gas with pressure relief from close-distance methane-rich seam group[J].Journal of Mining and Safety Engineering,2016,33(3):564-570.

[8]Candela Thibault,Brodsky Emily E,Marone Chris,et al.Laboratory eviden

ce for particle mobilization as a mechanism for permeability enhancement via dynamic stressing[J].Earth and Planetary Science Letters,2014,392:279-291.

[9]PAN Zhe-jun,Connell Luke D.Modelling permeability for coal reservoirs:A review of analytical models and testing data[J].International Journal of Coal Geology,2012,92:1-44.

[10]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.YIN Guang-zhi,LI Xiao-shuang,ZHAO Hong-bao,et al.Experimental study of effect of gas pressure on gas seepage of outburst coal[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(4):697-702.

[11]鲁 义,申宏敏,秦波涛,等.顺层钻孔瓦斯抽采半径及布孔间距研究[J].采矿与安全工程学报,2015,32(1):156-162.LU Yi,SHEN Hong-min,QIN Bo-tao,et al.Gas drainage radius and borehole distance along seam[J].Journal of Mining and Safety Engineering,2015,32(1):156-162.

[12]LU Yi-yu,GE Zhao-long,YANG Feng,et al.Progress on the hydraulic measures for grid slotting and fracking to enhance coal seam permeability[J].International Journal of Mining Science and Technology,2017,27(10):867-871.

[13]ZHOU Ai-tao,WANG Kai,FAN Ling-peng,et al.Gas-solid coupling laws for deep high-gas coal seams[J].International Journal of Mining Science and Technology,2017,27(4):675-679.

[14]WEI Jian-ping,LI Bo,WANG Kai,et al.3D numerical simulation of boreholes for gas drainage based on the pore-fracture dual media[J].International Journal of Mining Science and Technology,2016,26(4):739-744.

[15]林柏泉,刘 厅,杨 威.基于动态扩散的煤层多场耦合模型建立及应用[J].中国矿业大学学报,2018,47(1):32-39.

LIN Bai-quan,LIU Ting,YANG Wei.Solid-gas coupling model for coal seams based on dynamic diffusion and its application[J].Journal of China University of Mining & Technology,2018,47(1):32-39.

[16]Anggara Ferian,Sasaki Kyuro,Rodrigues Sandra.The effect of megascopic texture on swelling of a low rank coal in supercritical carbon dioxide[J].International Journal of Coal Geology,2014,125:45-56.

[17]TAN Yu-ling,PAN Zhe-jun,LIU Ji-shan,et al.Experimental study of impact of anisotropy and heterogeneity on gas flow in coal.Part I:Diffusion and adsorption[J].Fuel,2018,232:444-453.

[18]岳高伟,王宾宾,曹汉生,等.结构异性煤层顺层钻孔方位对有效抽采半径的影响[J].煤炭学报,2017(S1):138-147.

YUE Gao-wei,WANG Bin-bin,CAO Han-sheng,et al.Influence of effective drainage radius by borehole orientation along seam with anisotropic permeability[J].Journal of China Coal Society,2017(S1):138-147.

[19]WANG Lin-lin,Vandamme M,Pereira J M,et al.Permeability changes in coal seams:The role of anisotropy[J].International Journal of Coal Geology,2018,199:52-64.

[20]魏晨慧.熱流固耦合条件下煤岩体损伤模型及其应用[D].沈阳:东北大学,2012.WEI Chen-hui.Damage model for coal and rock under coupled thermal-hydraulic-mechanical conditions and its application[D].Shenyang:Northeastern University,2012.

猜你喜欢
瓦斯抽采数值模拟
水力割缝技术在金河煤矿瓦斯抽放中的应用
张家湾煤矿巷道无支护条件下位移的数值模拟
张家湾煤矿开切眼锚杆支护参数确定的数值模拟
跨音速飞行中机翼水汽凝结的数值模拟研究
双螺杆膨胀机的流场数值模拟研究
一种基于液压缓冲的减震管卡设计与性能分析
平宝公司顺层钻孔封孔工艺研究与实践
某矿井穿层钻孔水力强化增透技术研究
松软突出煤层顺层钻孔筛管护孔高效抽采技术研究