张富贵 付静 孟辉 孙校荷
摘 要:无人机由于受到飞行高度及携带相机焦距的限制,拍摄的图像范围很小,单个图像难以反映实际采集情况,为了获取拍摄区域全景图像,需将多个遥感图像进行拼接。传统的图像拼接算法具有计算量大、拼接耗时等缺点,无法满足无人机图像拼接的实时性要求。本文提出了一种基于SIFT特征向量的烟株遥感图像拼接方法,该方法在对无人机图像畸变进行预处理的基础上,利用相位相關算法确定图像重叠区域并检测该区域特征点,构建特征向量图来进行特征点匹配,最后根据两幅图像中相应特征点的坐标关系,采用RANSAC算法计算最优匹配变换矩阵。按照上述方法对获取的烟株图像进行拼接,结果表明:该方法快速有效,较传统SIFT拼接算法在速度上提高了49.8%。
关键词:无人机;图像拼接;烟株图像;SIFT算法;特征提取
中图分类号:TP391.41
文献标识码: A