王莉 张立圣 方贤德 黄永宽 庄凤婷
摘要:管内单相流强迫对流湍流传热广泛应用于各个工业领域。目前有很多管内单相流强迫对流湍流传热关联式,需要对其计算精度进行评价分析,便于选用。本文通过试验,获得了46组R134a在水平圆铜管内的单相流强迫对流湍流传热数据,从23篇文献中收集了1220组试验数据,建立了一个含有1266组数据的管内单相流强迫对流湍流传热试验数据库。用这个数据库对14个现有管内单相流强迫对流湍流传热关联式进行了评价分析,鉴别出了预测精度高的关联式,为管内单相流强迫对流湍流传热关联式的选用提供了依据。
关键词:强迫对流;管内;传热;关联式;湍流;单相流
中图分类号:TK124 文献标识码:A DOI:10.19452/j.issn1007-5453.2019.03.009
管内单相流强迫对流(简称管内强迫对流)湍流传热广泛应用于航空航天、能源建筑、石油化工等各个工业领域,如航空领域的飞机环境控制系统、动力系统、燃油系统等。相关设备和系统的研发设计离不开管内强迫对流湍流传热的计算,因此许多研究者提出了管内强迫对流湍流传热关联式。
随着航空航天技术和微电子技术的发展,大功率高密度电子设备的冷却提出了两相流传热技术的需求。研究发现,大多数两相流传热模型是在单相流传热模型的基础上发展而来的,最常见的是基于Dittus-Boelter公式的传热模型,其次是基于Gnielinski公式的传热模型。因此,单相流传热关联式的准确性也直接影响两相流传热计算的准确度。
目前公开报道的管内强迫对流湍流传热关联式很多,这一方面给工程应用带来了方便,另一方面也给关联式的选用带来了困惑。使用者往往不知道该选用哪个关联式。为此,本文一方面广泛收集整理管内强迫对流湍流试验数据,并通过试验获得部分数据,建立试验数据库;另一方面收集现有传热关联式。在此基础上,利用试验数据对关联式进行评价分析,获得各关联式对数据库的预测精度,为管内强迫对流湍流传热关联式的选用提供依据。
1管内强迫对流湍流传热的试验研究
1.1试验装置
试验装置如图1所示,主要由试验段、冷凝器、储液罐、过冷器、齿轮栗、流量计以及预热段组成。试验段为光滑圆铜管,内径分别为1.002mm和2.168mm,长200mm,水平放置。
工质为R134a制冷剂。制冷剂由储液罐被齿轮泵抽出,经过涡轮流量计,进入预热段。预热后经过长100mm的发展段,进入试验段。制冷剂在试验段中再次被加热,经过冷凝器,回到储液罐。如此循环。预热段和试验段有均匀缠绕的铜丝,用于通电加热R134a制冷剂。发展段的管径与试验段的管径一致。温度用T型热电偶测量。
1.2试验结果和不确定度分析
本试验共获得46组R134a在水平圆管中的强迫对流湍流传热试验数据。限于篇幅,数据整理过程不予详述。试验参数范围见表1。试验的不确定度根据Kline和McClintock提出的方法确定,见表2。
2从现有文献中获得的管内强迫对流湍流传热试验数据
除了通过试验获得的46组R134a管内强迫对流湍流传热试验数据外,从23篇已经发表的文献中收集了1220组试验数据,见表3。表中的试验数据参数范围为:雷诺数Re=3040〜651357,普朗特数Pr=0.9〜7.3,热流密度q=2〜34468kW/m,质量流速G=139〜39832kg/(m·s),水力直径D=0.25〜17.68mm,包含了水、氮、二氧化碳、氩、R134a、RC318和R113等7种工质。
3管内强迫对流湍流传热关联式
研究者提出了很多管内强迫对流湍流传热关联式,本文收集整理了14个,分别是Dittus-Boelter,Gnielinski,Sieder-Tate,Petukhov-Kirillov,Adams,Heta,Kakac,Ghajar-Tam,Hausen,Choi,Yu,Wang-Peng,Debray和Wu-Little等。由于篇幅限制,這里只列出对于本文数据库预测精度较高的前5个关系式,见表4。表中,f为Moody摩擦因数;D为管内径或水力直径,单位为m;L为换热有效长度与热入口段长度的和,单位为m;μ为[动力]黏度,单位为Pa·s;下标w表示定性温度为壁面温度,其他参数的定性温度为流体平均温度。
4管内强迫对流湍流传热关联式的评价
本文采用平均绝对误差(MAD)作为评价管内强迫对流湍流传热关联式预测精度的标准。MAD越小,预测精度越高。
此外,采用平均相对误差反映关联式在总体上是高估(MRD>0%)还是低估(MRD<0%)了数据库。
利用上述试验获得的46组和从文献中收集到的1220组管内强迫对流湍流试验数据组成的数据库,对14个管内强迫对流湍流传热关联式进行评价分析。表5中列出了预测精度最高的前5个关联式的评价结果。从表中可以看出,预测精度最高的是Gnielinski关联式,MAD=19.5%。Gnielinski、Sieder-Tate和Ghajar-Tam关联式对壁温的影响进行了修正。这种修正有助于提高公式的预测精度,但同时也增加了公式使用的困难。另外,在实际应用中,由于壁温一般是未知条件,含有与壁温有关的参数会增加公式预测的不确定性。综合分析可知,管内强迫对流湍流传热关联式还需进一步深入研究。
图2和图3分别是Gnielinski公式和Dittus-Boelter公式传热系数计算值与试验值的比较。可以看出,在传热系数大于60kW/(m·K)时,Gnielinski公式的計算精度显著高于Dittus-Boeltert1]公式的计算精度。
图4和图5分别是Gnielinski公式和Dittus-Boelter公式努塞尔数计算值与试验值的比较。可以看出,当努塞尔数Nu=150〜250时,Dittus-Boelter公式预测精度较高,其他情况下,Gnielinski公式预测精度较高。
5结论
本文建立了一个由1266组试验数据组成的管内强迫对流湍流传热试验数据库,包括作者试验获得的46组和从现有文献中获取的1220组。用该数据库对14个管内强迫对流湍流传热关联式进行了评价分析,可以得出以下结论:
(1)基于本文数据库,预测准确度最好的前5个关联式依次为Gnielinski,Dittus-Boelter,Sieder-Tate、Petukhov-Kirillov和Ghajar-Tam关联式,其MAD分别为19.5%、21.4%、23.3%、23.4%和24.2%。
(2)在本文数据范围内,在传热系数大于60 kW/(m2·K)时,Gnielinski公式的计算精度显著高于Dittus-Boelter公式的计算精度;当Nu=150〜250时,Dittus-Boelter公式预测精度较高,其他情况下,Gnielinski公式预测精度较高。
(3)Gnielinski、Sieder-Tate和Ghajar-Tam关联式引入了壁温影响的修正,实际应用中含有与壁温有关的参数会增加公式预测的不确定性,当壁温和流体温度相差不是很大时,可舍去壁温修正项。
(4)管内强迫对流湍流传热关联式的预测精度仍有待提高。
参考文献
[1]Dittus F W,Boelter L M K.Heat transfer in automobile radiator of the tubular type[J].International Communications in Heat and Mass Transfer,1985,12(l):3-22.
[2]Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flow[J].International Chemical Engineering,1976,16(2):359-368.
[3]Kline S J,Me Clintock F A.Describing uncertainties in singlesample experiments[J].Mechanical Engineering,1953,75:3-8.
[4]Liang Z H,Wen Y,Gao C,et al.Experimental investigation on flow and heat transfer characteristics of single-phase flow with simulated neutronic feedback in narrow rectangular channel[J].Nuclear Engineering&Design,2012,248:82-92.
[5]Wang C C,Chiou C B,Lu D C.Single-phase heat transfer and flow friction correlations for micro fin tubes[J].International Journal of Heat&Fluid Flow,1996,17(5):500-508.
[6]Liu N,Li J.Experimental study on pressure drop of R32,R152a and R22 during condensation in horizontal minichannels[J].Experimental Thermal&Fluid Science,2016,71:14-24.
[7]Qi S L,Zhang P,Wang R Z,et al.Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes[J].International Journal of Heat&Mass Transfer,2007,50(9-10):1993-2001.
[8]Ma J,Li L,Huang Y,et al.Experimental studies on singlephase flow and heat transfer in a narrow rectangular channel[J].Nuclear Engineering&Design,2011,241(8):2865-2873.
[9]Adams T M,Dowling M F,Abdel-Khalik S I,et al.Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels[J].International Journal of Heat&Mass Transfer,1999,42(42):4411-4415.
[10]Tian W,Cao X,Yan C,et al.Experimental study of singlephase natural circulation heat transfer in a narrow,vertical,rectangular channel under rolling motion conditions[J].International Journal of Heat&Mass Transfer,2017,107:592-606.
[11]Wang C,Gao P,Tan S,et al.Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J].Experimental Thermal&Fluid Science,2013,44(1):490-497.
[12]Ducoulombier M,Colasson S,Haberschill P,et al.Charge reduction experimental investigation of C02,single-phase flow in a horizontal micro-channel with constant heat flux conditions[J].International Journal of Refrigeration,2011,34(4):827-833.
[13]Grohmann S.Measurement and modeling of single-phase and flow-boiling heat transfer in microtubes[J].International Journal of Heat&Mass Transfer,2005,48(19):4073-4089.
[14]Meyer J P,Mckrell T J,Grote K.The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes[J].International Journal of Heat&Mass Transfer,2013,58(1-2):597-609.
[15]Aroonrat K,Jumpholkul C,Leelaprachakul R,et al.Heat transfer and single-phase flow in internally grooved tubes[J].International Communications in Heat&Mass Transfer,2013,42(3):62-68.
[16]Fernando P,Palm B,Ameel T,et al.A minichannel aluminium tube heat exchanger-Part I:Evaluation of single-phase heat transfer coefficients by the Wilson plot method[J].International Journal of Refrigeration,2008,31(4):669-680.
[17]Man C,Lv X,Hu J,et al.Experimental study on effect of heat transfer enhancement for single-phase forced convective flow with twisted tape inserts[J].International Journal of Heat&Mass Transfer,2016,106:877-883.
[18]Bang I C,Chang S H,Baek W P.Visualization of the subcooled flow boiling of R-134a in a vertical rectangular channel with an electrically heated wall[J].International Journal of Heat&Mass Transfer,2004,47(19):4349-4363.
[19]Sarwar M S,Jeong Y H,Chang S H.Subcooled flow boiling CHF enhancement with porous surface coatings[J].International Journal of Heat&Mass Transfer,2007,50(17):3649-3657.
[20]Hua S,Huang R,Li Z,et al.Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J].Applied Thermal Engineering,2015,77:180-191.
[21]Vlachou M C,Lioumbas J S,David K,et al.Effect of channel height and mass flux on highly subcooled horizontal flow boiling[J].Experimental Thermal&Fluid Science,2017,83:157-168.
[22]Yan J,Bi Q,Cai L,et al.Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes[J].Experimental Thermal&Fluid Science,2015,68:11-21.
[23]Belyaev A V,Varava A N,Dedov A V,et al.An experimental study of flow boiling in minichannels at high reduced pressure[J].International Journal of Heat&Mass Transfer,2017,110:360-373.
[24]Hata K,Masuzaki S.Subcooled boiling heat transfer for turbulent flow of water in a short vertical tube[J].ASME Journal of Heat Transfer,2009,132(1):011501.
[25]Hata K,Masuzaki S.Critical heat fluxes of subcooled water flow boiling in a short vertical tube at high liquid Reynolds number[J].Nuclear Engineering&Design,2010,240(10):3145-3157
[26]Papell S S.Subcooled boiling heat transfer under forced convection in a heated tube[Z].Lewis Research Center,1963.
[27]Sieder E N,Tate G E.Heat transfer and pressure drop of liquids in tubes[J].Industrial&Engineering Chemistry,1936,28(12):1429-1435.
[28]Petukhov B S,Kirillov V V.On heat exchange at turbulent flow of liquid in pipes[J].Teploenergetika,1958(4):63-68.
[29]Adams T M,Abdel-Khalik S I,Jeter S M,et al.An experimental investigation of single-phase forced convection in microchannels[J].International Journal of Heat&Mass Transfer,1998,41(6-7):851-857.
[30]Hata K,Kai N,Shirai Y,et al.Transient turbulent heat transfer for heating of water in a short vertical tube[J].Journal of Power&Energy Systems,2008,2(3):318-329.
[31]Kakac S,Shah R K,Aung W.Handbook of single-phase convective heat transfer[M].New York:John Wiley and Sons,1987.
[32]Ghajar A J,Tam L M.Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations[J].Experimental Thermal&Fluid Science,1992,8(4):79-90.
[33]Rohsenow R W,Hartnett J P,Cho Y I.Handbook of heat transfer[M].McGraW-Hill,1998.
[34]Choi S B,Barron R F,Warrington R O.Fluid flow and heat transfer in microtubes[C]//Micromechanical Sensors,Actuators and Systems:Proceedings of 1991 ASME Winter Annual Meeting,1991:123-134.
[35]Hao P F,He F,Zhu K Q.Flow characteristics in a trapezoidal silicon microchannel[J].Journal of Micromechanics&Microengineering,2005,15(15):1362-1368.
[36]Wang B X,Peng X F.Experimental investigation on liquid forced-convection heat transfer through microchannels[J].International Journal of Heat&Mass Transfer,1994,37(94):73-82.
[37]Debray F,Franc J P,Maitre T,et al.Mesure des coefficients de transfert thermique par convection forcee en mini-canaux[J].Mecanique&Industries,2001,2(5):443-454.
[38]Wu P,Little W A.Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J].Cryogenics,1983,23(5):273-277.