基于压电技术的振动能量收集器的研究分析牛进才

2019-09-10 07:22刘文慧
赤峰学院学报·自然科学版 2019年2期

刘文慧

摘要:以压电技术为原理设计的振动能量收集系统,将环境中广泛存在的振动能量收集起来,为无线传感器网络的供电方式提供了一种有效途径.本文研究了国内外基于振动方式的能量回收系统电路,并对这些电路进行了仿真分析比较.

关键词:自供式电源;压电技术;振动能量系统;接口电路

中图分类号:TN712.5  文献标识码:A  文章编号:1673-260X(2019)02-0022-04

随着“物联网+”和人工智能的快速发展,无线传感器网络技术得到广泛应用.而无线传感器网络技术的一个重要因素就是其供电问题.若采用常规电源为无线传感网络供电,必须定期对电源进行更换维护,且物联网中节点数较多,维护起来较为繁琐.自供式电源为无线传感器网络的供电问题提供了一种有效的解决方案.自然界中存在各种形式的能源,例如太阳能,风能,热能,振动能等.不同能量的密度不同,虽然振动能量的回收功率仅有微瓦或毫瓦级,但可以满足微功耗系统以及无线传感网络的电源需求.

1 振动能量的收集装置

能够收集振动能量的装置种类较多,根据振动电源所需的能量来源途径以及收集方式的不同,可将其分为静电式、电磁式和压电式等.静电式电源利用静电效应,将机械振动的能量转变成电能,但其需要外部电源来维持系统工作.当静电式收集装置在搜集振动能量时,先有外部电源对其电容进行充电.当振动源发生振动时,电容储存的电荷发生移动,进而在收集装置内部形成电流,为外部负载提供电能.由于静电式需外部电源,因此限制了其在无线传感网络领域的应用.

电磁式收集装置利用法拉第电磁感应原理进行能量的收集.感应电动势的大小与磁通对时间的变化率成正比,线圈匝数和电磁频率影响感应电动势的大小.增大线圈匝数,则回收装置系统的体积也相对增大,且振动源的振动频率分布范围较.若将回收装置放在低频的振动源中,此时回收装置输出的电压较小,不能驱动无线传感器网络的工作.且电磁式收集装置容易受到电磁干扰,限制了其在无线传感器网络的应用.

压电式能量回收器是利用压电材料进行能量收集.当压电片受力时,压电材料发生形变并在其内部产生电场,压电片发生极化效应,此时压电片表面形成极性相反的电荷.当振动源的振动力消失时,压电片又恢复原来不带电状态.在振动力的作用使附在压电材料表面的电荷间距减小,极化强度变小,此时若有导线连接,电荷就会沿着导线定向移动.在此过程中,利用压电材料将振动能转化成电能,进而为低功耗无线网络供电.压电式能量回收器具有能量密度较高,不受电磁干扰,回收器装置结构简单等优点,因此可将其作为无线传感网络电源的一种有效方式.

2 振动能量回收系统的设计

为低功耗无线网络提供电源,要求能量回收系统高效地提取压电材料从振动源俘获的能量,而且还要满足负载系统的功率要求.因此在系统设计时不仅要保证收集系统自身损耗较低,而且还需要从复杂的振动源里面俘获更多的能量,同时高效率地为负载系统供电.为了满足上述指标,首先对能量回收系统的发电装置进行优化设计,使能量收集器以最大功率从振动源获取能量;其次对能量回收系统的接口电路进行设计,尽可能将压电材料获取的振动能高效地提供给负载;其次要满足能量收集器能够为负载提供足够的功率,同时还要保证设计的能量收集系统自身损耗较低.

传统的压电片是由压电陶瓷(Piezoelectric ceramic transducer,PZT)做成,压电陶瓷具有较大的压电常数,适合做能量收集器的发电装置材料.但其在振动源受到较大的机械振动时,压电陶瓷容易碎裂,因此限制了其在能量回收系统的利用.随着高分子材料的发展,利用柔性更大的压电材料聚偏氟乙烯制作成压电片(Polyvinylidene fluoride,PVDF).相对于压电陶瓷,PVDF有着更好的柔性,在高频和压力下获取的能量更多,可利用时间更长,压电片的阻抗更小,质量较轻[1].Sun和Qin等学者用新型复合材料驰豫型铁电体PMN-PT做成压电片,经过大量实验证明用PMN-PT作为能量收集系统的发电装置,压电片也可以输出较高的电压和功率[2].

影响能量收集装置的因素不仅与收集装置的材料有关,而且与采集装置的结构相关.目前压电式能量采集装置的结构主要有悬臂梁、简支梁,矩形梁以及圆形和钹型结构等.悬臂梁结构的压电片应用较早,其主要优点为:压电片结构简单,制造方便;有利于降低悬臂梁的自振频率,使采集装置在振动源更容易发生共振,提高采集装置的俘获能量的能力.除悬臂梁的结构外,还可以采用圆形和钹型结构等来设计能量收集装置.当压电片受到振动源的压力时,由于采集装置设计成圆盘形结构,其受力相对于其他结构来说,圆盘形面积受力更加均匀,能量采集装置可以更为有效俘获振动源的能量,提高收集能量的效率.

压电装置的工作状态影响采集装置俘获的能量,目前压电装置的有效工作状态主要有d31转换模式,这种转换模式是振动方向与极化方向处于垂直状态.Roundy等人对d31转换模式通过大量实验研究发现,d31模式下的机电耦合系数较高,在低频振动下,利用压电材料能够俘获更多的振动能.d31转化模式的材料结构更容易制作,其系统的固有频率较低,适合于在振动源频率低的环境中应用.d33转换模式也是压电装置的一种有效工作状态,其特点有:当振动源对压电材料施加压力时,压电材料发生形变的作用力方向与极化方向相同;d33模式与d31模式相比,d33模式的机电耦合系数更大,俘获振动源的能量更多,其将机械能转化成电能的效率更高.

3 振动能量收集器的电路设计分析

3.1 经典采集电路

由于环境中的振动源比较复杂,振动频率的范围较大,压电片受到的压力波动较大,高效和适应范围广的能量回收系统接口电路很难实现.因此在设计能量回收系统的接口电路时,首先建立起压电片的等效电路模型,然后根據振动源的物理特性来设计高效的能量收集器.Ottman和Hofmann等学者经过实验发现可以将压电片的模型等效为一个交流电流源和一个电容的并联[3],如图1所示.

经典的能量回收系统的接口电路如图2所示,接口电路有四个二极管构成一个全波整流电路,四个二极管交替导通,当压电片两端电压大于二极管的导通电压时,对电容Cr充电获取电能,同时对负载供电.若选择合适的电容Cr,当压电片电压较小时,电容Cr将会对负载供电.对接口电路进行仿真分析,得出负载和频率的功率关系如图3-4所示.由此可以看出,经典的振动能量回收系统的功率与负载有关,且随着负载变化先增大后减小.说明能量回收系统存在一个最大功率负载,且功率随着频率的增大下降较快.然而环境中振动源的频率范围较广,低功耗无线传感器阻抗范围波动较大,因此传统的接口电路并不能适应实际的物联网电源需求.

3.2 同步电荷提取电路

文献[4]设计了一种新型的接口电路,同步电荷提取电路(Synchronous charge extraction circuit,SCE),电路图如图5所示.当压电片两端电荷达到最大值时,闭合开关S1A,此时可将压电片的电荷转移至电感上,当压电片的电荷全部转移至电感时断开开关,此时电感对滤波电容C1充电,实现对负载供电.在电感对Cr充电时要保证充电时间小于压电片的积累电荷的时间,即小于机械振动周期.

对同步电荷提取电路进行仿真,其仿真结果如图6-7所示,从图中可知将同步电荷提取电路用作接口电路时,能量收集系统得到的功率随负载变化波动较小,且获得的功率数值是经典接口电路的2倍,因此同步电荷提取电路适合做接口电路.但其也有一些弊端,当振动源的频率波动较大时,同步电荷提取电路收集的能量波动较大,且此接口电路需要脉冲信号控制系统对压电片的电荷积累和提取进行控制,不适用于做自供电式的电源.

基于上述原因文献[5]对经典的同步电荷提取电路进行了改进,如图8所示.改进型的同步电荷提取电路工作状态共分为四个阶段:第一阶段,电流经过晶体管Q1,D2正向对电容C1,C2充电;第二阶段,当压电片受到反向压力时,电容C1两端电压降低,晶闸管D1,D2反向截止不能对电容C2充电;第三阶段为能量提取阶段,电容C2与晶闸管D1,电感L2,晶体管Q4构成LC振荡电路,当电容C1经过1/4LC振荡周期时,电容C2经过D4,D1,Q2,Q4放电,此时L2储存能量较大,C2经过放电之后两端电压不能使Q2,Q4导通;第四阶段L2经过二极管D5,把能量存储到C4供给负载.负载获取的能量是标准提取电路的3倍,且不需要额外的控制电路,为自供电式电源的设计提供了一种有效的途径.

3.3 并联电感同步收集电路

Guyomar和Badel等人建立了并联电感同步收集电路(Synchronized Switch Harvesting on Inductor,P-SSHI)如图9所示[6],电路中压电片并联电感和开关后与整流电路连接,当压电材料受到振动源的最大压力时,开关闭合,电感发生LC振荡,开关经过半个振荡周期后断开.此时电流桥处于截止状态,当振动源对压电片的压力达到一定程度时,整流桥导通,压电片开始对滤波电容C1和负载充电.

对P-SSHI电路仿真结果如图10-11所示,并联电感同步开关电路作为接口电路时,获得的功率比经典接口电路和同步电荷接口电路高,但其需要脉冲控制,且随着频率的波动,收集功率也会波动.因此原始的并联电感同步开关接口电路也不适合自供式的振动能量收集器.

文献[7-8]对并联电感同步开关接口电路进行了改进,称之为自供电式接口电路,如图12所示.此接口电路由三部分组成:第一部分主要是由壓电材料和外围电路的控制电路开关MOS管组成,用于收集振动源的能量;第二部分主要是由异或门和放大器搭建的控制电路,控制电路接入了两个二阶RC电路,再由异或门电路搭建的数字电路连接RC电路,将压电片输出的电压进入异或门的输入,将输出的电压作为同步开关的控制电压.从异或门输出的即为同步开关的控制电压,此控制电路避免了外部电源供电;第三部分是由电容C5,二极管D6-D8组成的直流供电部分,为负载供电.自供电式同步开关控制接口电路能够有效提高输出功率,且不需要外部电源.

4 结束语

本文研究分析了基于压电方式的振动能量收集系统的设计过程.首先介绍了振动能量收集器在低功耗无线传感器技术的应用前景,然后研究分析了能量收集系统的发电装置和接口电路.对国内外振动能量收集器的接口电路,进行了仿真分析,重点分析负载和频率对功率的影响.振动能量收集系统的功率随着负载的变化发生变化,能量收集系统存在一个最优负载,且收集系统对负载提供的功率受振动源频率的波动较大.

目前适用于复杂振动源的振动收集装置尚在研究之中,且经典的接口电路不能广泛适用实际的复杂振动源.要针对环境中具体的振动源的特性,通过改进各种经典的接口电路来设计振动能量收集器,才能广泛应用到低功耗的无线传感网络.

参考文献:

〔1〕Churchill D L, Townsend C P, Arms S W. Strain energy harvesting for wireless sensor networks[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5055:319-327.

〔2〕Sun C, Qin L, Li F, et al. Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) Device[J]. Journal of Intelligent Material Systems & Structures, 2009, 20(5):559-568.

〔3〕Ottman G K, Hofmann H F, Lesieutre G A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode[C]// Power Electronics Specialists Conference, 2002. Pesc 02. 2002 IEEE. IEEE, 2002:1988-1994.

〔4〕Lefeuvre E, Badel A, Richard C, et al. A comparison between several vibration-powered piezoelectric generators for standalone systems[J]. Sensors & Actuators A Physical, 2006, 126(2):405-416.

〔5〕屈凤霞,夏银水,施阁,等.自供电的同步电荷提取电路的优化设计[J].传感技术学报,2016,29(3):349-355.

〔6〕Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing.[J]. Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on, 2005, 52(4):584-595.

〔7〕Mitcheson P D, Yeatman E M, Rao G K, et al. Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices[J]. Proceedings of the IEEE, 2008, 96(9):1457-1486.

〔8〕張淼,孟庆丰,王宏金.自供电式并联电感同步开关压电能量收集电路实现方法研究[J].振动与冲击,2015,34(9):120-124.