煤巷聚焦多点电源探测电场超前扫描控制策略

2019-07-02 06:08刘志民孟彩茹
煤田地质与勘探 2019年3期
关键词:电场线电场控制策略

刘志民,孟彩茹,李 冰,韩 雷,潘 越



煤巷聚焦多点电源探测电场超前扫描控制策略

刘志民,孟彩茹,李 冰,韩 雷,潘 越

(河北工程大学机械与装备工程学院,河北 邯郸 050638)

为实现煤巷聚焦多点电源有效探测电场聚焦深度扫描和偏转角度扫描,准确把握有效探测电场的变化规律,根据超前扫描探测机理,利用高斯定理,采用两种不同的方法对积分过程进行求解,推导单根有限长均匀带电直线电极的电场线方程。利用电场线空间分布的对称性,归纳推理共面多电极电场线方程。改变聚焦屏流比系数,计算有效探测电场线边界线方程,分析平均电流密度及空间立体角变化规律;同时改变聚焦屏流比系数和偏转屏流比系数,分析电场边界线下边界角及偏转角变化规律,确定出超前扫描探测主电极与约束电极发射电流取值范围。此研究为野外开展聚焦多点电源电法勘探提供技术指导,对完善聚焦电法勘探机理,推动该技术理论发展具有重要意义。

聚焦多点电源;电场线;聚焦效应;偏转效应;超前扫描探测控制策略

矿井直流电法超前探测技术是一种全空间电法勘探技术,理论成熟、工序简单、方法灵活、探测距离大、对含导水地质构造敏感强等优点,在矿井水文地质预报预测中得到了广泛应用[1]。矿井直流电法探测其发射电极沿坑道竖直向下布置,受电场全空间效应影响,电流分布具有分散性,呈辐射状向四周传播,且常受坑道后方及旁侧浮尘、轨道、机电设备、浅部低阻疏松层屏蔽效应等电磁干扰影响,造成探测结果与实际工程地质工况存在一定的偏差[2-3]。为使电流沿掘进断面前方集中传播,减小电场全空间效应及干扰因素影响,国内外众多学者提出聚焦多点电源勘探技术。20世纪70年代,印度学者A. Roy等[4]提出直流聚焦激电法勘探理论,并开展了物理模型实验模拟;R. N. Gupta等[5]从理论和试验方面对比分析了直流聚焦电阻率法和双极装置的优缺点;C. Panissod等[6]采用直流聚焦电阻率法在考古学领域进行了试验模拟测试。国内学者[7-9]针对直流聚焦电阻率法探测机理、试验模拟及资料解译方法等方面开展大量研究。2004年德国GET(Geo Exploration Technologies)公司研制了BEAM(Bore-Tunnelling Electrical Ahead Monitoring)法隧道超前预报技术(聚焦变频激电法),在国内物探领域已取得了较好的应用效果[10-11]。文献[12-13]在直流聚焦激电法、直流聚焦电阻率法和聚焦变频激电法等探测方法研究基础上,将聚焦电法理论与双频激电法[14]理论相互融合,充分利用两种探测方法的优点,提出一种多参量(视电阻率、视幅频率、视相频率)综合检测与评判的坑道超前勘探方法——聚焦双频激电法探测技术,并针对仪器研制及模型试验等方面开展研究。

上述聚焦电法勘探技术均根据同性多点电源相互排斥原理,使主电极和约束电极同时发射同性不等强度的电流场,利用约束电极对主电极的约束作用,在掘进断面前方形成集中稳定的半空间探测电场。为实现掘进前方不同方位和距离异常地质构造的准确探测,势必对探测电场的传播方向和传播距离进行灵活有效地控制。为此,笔者在文献[12-13]基础上,通过推导聚焦多点电源电场线方程,分析探测电场空间分布特征,提出聚焦与偏转扫描探测控制策略,合理地确定出主电极与约束电极发射电流取值范围。本研究对完善聚焦多点电源电法勘探理论,提高资料反演解译及模型正演模拟的准确性和有效性,推动电法勘探理论的发展具有重要意义。

1 超前扫描探测基本原理

图1 电极布置方式

图2 超前扫描探测

Fig.2 Advanced scanning detection

2 多点电源电场线方程推导

为准确把握煤巷多点电源超前扫描探测聚焦与偏转效应变化规律,可用空间电场线从几何上由定性到定量直观形象地刻画。电场线是法拉第为描绘静电场的形状和空间分布特征而引入的一系列假想曲线,曲线上每个点的切线方向(d)与该点的电场强度方向()相一致[15-16]。推导多点电源电场线方程,其实质是计算多根有限长均匀带电直线电极的电场线方程。若按电场线定义计算,微分方程d×=0求解过程较为复杂,而利用高斯定理[17]进行计算,其过程简洁直观。

2.1 单电极电场线方程

对上两式求积分,得

同理可得

图3 单电极电流源空间电场

Fig.3 Spatial electric field of single electrode current source

2.2 共面多电极电场线方程

则共面多电极电场线方程为

3 聚焦与偏转效应探测控制策略

3.1 聚焦效应探测控制策略

自主研制的超前探测仪发送机可同时发送5路电流幅值在10~100 mA范围内连续可调的双频调制方波[13],设主电极发射电流0=30 mA,约束电极电流1=330 mA,即聚焦屏流比系数1=3==1。煤矿井下巷道有效掘进断面面积通常为5 m×5 m,设电极空间坐标2.5 m,计算此时电场线微分方程,得到沿掘进方向(面轴正向)聚焦效应电场线分布情况如图4所示。从电场线分布情况可以看出,有效探测电场在约束电场作用下,沿断面正前方集中传播,形成了较好的聚焦效应。

图4 聚焦效应电场线分布

图5 边界角与偏转角定义

图6 平均电流密度变化规律

保持主电极发射电流0不变,考虑探测仪器发射电流上限不超过100 mA,使聚焦屏流比系数1=3在0.95~5范围内变化,得到聚焦扫描探测电场边界线如图7所示,其有效探测电场空间立体角随聚焦屏流比系数的变化曲线如图8所示。随聚焦屏流比系数的增大,聚焦效应逐渐增强,空间立体角逐渐减小,当>3.5时,减小程度趋于平缓,即此时聚焦效应变化已不明显。因此,采用聚焦效应特性进行深度扫描探测,聚焦屏流比系数宜选择在3.0≤≤3.5,主电极发射电流控制在28 mA≤ I≤33 mA范围内,此时可获得最佳的聚焦效应探测效果。

3.2 偏转效应探测控制策略

图7 聚焦扫描探测电场边界线

图8 空间立体角变化规律

图9 偏转角变化规律

图10 电场边界线下边界角变化规律

4 结论

a.共面多电极电场线方程等于空间任意点到各电极两端点距离之差与聚焦屏流比系数乘积的代数和,且为某一常量,即仅与各电极空间坐标位置以及聚焦屏流比系数和偏转屏流比系数有关,而与主电极发射电流无关。

[1] 韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635–639. HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635–639.

[2] 程久龙,李飞,彭苏萍,等.矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742–1750. CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742–1750.

[3] 鲁晶津,吴小平. 巷道直流电阻率法超前探测三维数值模拟[J]. 煤田地质与勘探,2013,41(6):83–86. LU Jingjin,WU Xiaoping. 3D numerical modeling of tunnel DC resistivity for in-advance detection[J]. Coal Geology & Exploration,2013,41(6):83–86.

[4] ROY A,APPARO A. Depth of investigation in direct current methods[J]. Geophysics,1971,36(5):943–959.

[5] GUPTA R N,HATTACHARYA P K. Unipole method of electrical profiling[J]. Geophysics,1963,28(4):608–616.

[6] PANISSOD C,LAJARTHE M,TABBAGH A. Potential focusing:A new multi-electrode array concept,simulation study and field tests in archaeological prospecting[J]. Journal of Applied Geophysics,1997,38(1):1–23.

[7] 阮百尧,邓小康,刘海飞,等.坑道直流电阻率超前聚焦探测的影响因素及最佳观测方式[J].地球物理学进展,2010,25(4):1380–1386. RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels[J].Progress in Geophysics,2010,25(4):1380–1386.

[8] 张力,阮百尧,吕玉增,等. 坑道全空间直流聚焦超前探测模拟研究[J]. 地球物理学报,2011,54(4):1130–1139. ZHANG Li,RUAN Baiyao,LYU Yuzeng,et al. Study of full-space numerical modeling of advanced exploration in tunnel with DC focus resistivity method[J]. Chinese Journal of Geophysics,2011,54(4):1130–1139.

[9] DENG Xiaokang,LIU Jianxin,LIU Haifei,et al. 3D finite element numerical simulation of advanced detection in roadway for DC focus method[J]. Transactions of Nonferrous Metals Society of China,2013,23(7):2187–2193.

[10] GEOHYDRAULIK Data. Beam presentation[Z/OL]. Kirchvers:Geohydraulik Data Corp.,2004. http://www.geoexploration technologies.de/.

[11] 高振宅. BEAM地质超前预报系统在锦屏引水隧洞TBM施工中的应用[J]. 铁道建筑技术,2009(11):65–67. GAO Zhenzhai. The application of the BEAM geological advance prediction system for the TBM construction of the Jinping diversion tunnel[J]. Railway Construction Technology,2009(11):65–67.

[12] 刘志民,刘希高,张金涛,等. 交流聚焦激电法煤巷超前探测阻容试验模拟[J]. 煤炭学报,2015,40(9):2144–2151. LIU Zhimin,LIU Xigao,ZHANG Jintao,et al. Experimental simulation of resistance-capacitance model for advanced detection in coal roadway based on alternating current focusing induced polarization method[J]. Journal of China Coal Society,2015,40(9):2144–2151.

[13] 张金涛,吕一鸣,刘志民,等. 聚焦双频激电法超前探水激励信号发送系统设计[J]. 煤炭科学技术,2015,43(8):107–111. ZHANG Jintao,LYU Yiming,LIU Zhimin,et al. Design on advanced water detection excitation signal transmission system of focusing double frequency induced polarization method[J]. Coal Science and Technology,2015,43(8):107–111.

[14] 汤井田,戴前伟,柳建新,等. 何继善教授从事地球物理工作60周年学术成就回顾[J]. 中国有色金属学报,2013,23(9):2323–2339. TANG Jingtian,DAI Qianwei,LIU Jianxin,et al. Academic achievements of Professor HE Jishan dedicated to geophysics for six decades[J]. The Chinese Journal of Nonferrous Metals,2013,23(9):2323–2339.

[15] 王爱霞,高国棉,周九茹. 有限长均匀带电直线电场的对称性分析与计算[J]. 大学物理,2015,34(10):17–19. WANG Aixia,GAO Guomian,ZHOU Jiuru. Calculation and symmetrical analysis of electric field of a finite line with even charge[J]. College Physics,2015,34(10):17–19.

[16] 刘志民,韩雷,张伟杰,等. 煤巷多点电流源双频激电法超前扫描探测技术[J]. 煤田地质与勘探,2017,45(4):149–156. LIU Zhimin,HAN Lei,ZHANG Weijie,et al. Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway[J]. Coal Geology & Exploration,2017,45(4):149–156.

[17] 廖仁忻,徐志和. 用高斯定理求解电力线方程[J]. 大学物理,1993,12(7):14–15. LIAO Renxin,XU Zhihe. Solving the power line equation with Gauss theorem[J]. College Physics,1993,12(7):14–15.

Detection electric field control strategy for advanced scanning detection of focusing multipoint current sources in coal mine roadway

LIU Zhimin, MENG Cairu, LI Bing, HAN Lei, PAN Yue

(College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China)

In order to realize the effective detection of electric field focusing depth and deflection angle scanning of focusing multipoint current sources in coal mine roadway, and accurately grasp its variation, according to the advanced scanning detection mechanism, Gauss theorem and two different methods were used to solve the integration process and derive the electric field line equation of a uniformly charged linear electrode with finite length. The electric field line equation of coplanar multi-electrode layout is induced and deduced through using its spatial distribution symmetry. By changing focusing shielding current ratio coefficient, this paper calculates the boundary line equation of effective detection electric field lines and analyzed the variation of average current density and spatial angle. The lower boundary angle and the deflection angle variations of the electric field boundary line were analyzed through changing simultaneously focusing and deflection shielding current ratio coefficients. The range of emission current intensity of the main electrode and the constrained electrode for advanced scanning detection was determined. This research will provide a technical guidance for the electric survey of focusing multipoint current sources in the field, and is of great significance for improving the exploration mechanism of focusing electric method and promoting the development of geophysical theory.

focusing multipoint current sources; electric field lines; focusing effect; deflection effect; control strategy for advanced scanning detection

Natural Science Foundation of Hebei Province,China(D2017402158)

刘志民,1975年生,男,河北承德人,博士,副教授,从事电法超前探测理论与应用研究. E-mail:liuzhiminhd@126.com

孟彩茹,1980年生,女,河北石家庄人,博士,副教授,从事煤矿机电一体化技术研究. E-mail:mengcairu1980@163.com

刘志民,孟彩茹,李冰,等. 煤巷聚焦多点电源探测电场超前扫描控制策略[J]. 煤田地质与勘探,2019,47(3):195–200.

LIU Zhimin,MENG Cairu,LI Bing,et al. Detection electric field control strategy for advanced scanning detection of focusing multipoint current sources in coal mine roadway[J]. Coal Geology & Exploration,2019,47(3):195–200.

1001-1986(2019)03-0195-06

P631;TD82

A

10.3969/j.issn.1001-1986.2019.03.030

2018-02-07

河北省自然科学基金项目(D2017402158)

(责任编辑 聂爱兰)

猜你喜欢
电场线电场控制策略
计及SOC恢复的互联电网火储联合AGC控制策略研究
基于递归模糊神经网络的风电平滑控制策略
巧用对称法 妙解电场题
求解匀强电场场强的两种方法
矩形轴向有界磁场均匀变化时激发的涡旋电场的电场线方程
现代企业会计的内部控制策略探讨
判断电势高低的几个绝招
电场线和等势面的理解与应用
电场强度单个表达的比较
钢铁行业PM2.5控制策略分析