灌溉制度对膜下滴灌甜菜产量及水分利用效率的影响

2019-05-24 07:29王振华杨彬林谢香文王则玉杨洪泽董心久
农业工程学报 2019年8期
关键词:甜菜利用效率定额

王振华,杨彬林,谢香文,王则玉,杨洪泽,董心久



灌溉制度对膜下滴灌甜菜产量及水分利用效率的影响

王振华1,2,杨彬林1,2,谢香文3,4※,王则玉4,杨洪泽5,董心久5

(1. 石河子大学水利建筑工程学院,石河子 832000;2. 石河子大学现代节水灌溉兵团重点实验室,石河子 832000; 3. 中国农业大学水利与土木工程学院,北京 100083;4. 新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091; 5. 新疆农业科学院经济作物研究所,乌鲁木齐 830091)

为制定新疆合理的甜菜膜下滴灌制度,设置3个灌水次数(8、9和10次)和2个灌水定额(45和60 mm)两因素全组合试验,于2016—2017年在新疆玛纳斯县农科院甜菜改良中心开展田间试验。结果表明,灌水次数增加时甜菜叶面积指数与产量增加,含糖率降低,对甜菜的水分利用效率、耗水量无明显影响(>0.05),甜菜叶绿素值随灌水次数与定额增加呈下降趋势;在灌水次数与定额交互作用下,灌水8次时由于土壤相对含水率低于50%,甜菜会减产;当灌水9次,灌水定额为45 mm时,增加15 mm灌水定额土壤相对含水率达50%以上,此时甜菜增产7.4%~7.7%,糖产增加9.4%~9.7%;而继续增加灌水次数时,会导致甜菜含糖率降低而降低糖产。因此针对新疆膜下滴灌甜菜以60 mm灌水定额灌水9次为宜,可获得高产与糖产,较传统新疆膜下滴灌甜菜制度节水10%。该研究对指导新疆膜下滴灌甜菜灌溉制度具有一定意义。

灌溉;作物;土壤水分;甜菜产量;甜菜产糖量;水分利用效率

0 引 言

水资源是农业的保障,当前中国农业用水量占总用水量的60%以上[1],而新疆农业灌溉用水占到总用水量95%左右[2],如何有效利用水资源是当下研究热点。膜下滴灌既能提高田间水分利用效率,避免深层渗漏,减少棵间蒸发,同时又具备增温保墒作用[3],在中国西北干旱区特别是新疆农业灌溉上得到广泛应用[4-5]。膜下滴灌与传统灌溉模式相比可减少灌溉用水50%以上,显著提高作物水分利用效率[6-7]。甜菜(L.)属于需水量大的藜科经济作物,灌水量对甜菜产量影响显著[8],而在膜下滴灌条件下甜菜产量与产糖量均高于沟灌和喷灌[9]。

灌溉制度直接影响土壤含水率,对作物产量影响显著[10-12]。目前,国内外学者对甜菜适宜灌溉制度及土壤含水率做了大量研究:Kosobryukhov等提出适当减少甜菜灌水量可以提高水分利用效率[13]。Fabeiro等在半干旱气候条件下试验表明甜菜最适宜的需水量为6 898 m3/hm2,同时也能达到较高的产量117.64 t/hm2,水分利用效率提高到170.55 kg/(mm·hm2)[14]。李智通过不同灌水试验表明:甜菜叶面积指数、干物质积累量、净光合速率和气孔导度均随灌水量增加而增加,在耗水量为545.15 mm时,块根产量达到8.6´104kg/hm2,水分利用效率为160.71 kg/(mm·hm2)[15]。冯泽洋等通过滴灌甜菜亏缺试验表明:叶丛繁茂期与块根膨大期适宜灌水量为1 147.78和635.54 m3/hm2[16]。董心久等试验表明新疆膜下滴灌甜菜适宜灌溉定额为360 m3/667m2[17]。孙乌日娜提出在膜下滴灌条件下甜菜生长所需土壤含水率占田间持水量的69%,低于此值时可以考虑田间灌溉[18]。李阳阳对甜菜进行亏缺试验,表明在甜菜叶丛快速生长期,0~40 cm土层含水量下降至田间持水量50%时应及时补充灌溉;在甜菜块根膨大期, 0~40 cm土层含水量下降至田间持水量的30%时应补充灌溉;在糖分积累期,0~40 cm土层含水量保持在田间持水量30%时甜菜产量及含糖量最高[19-21]。Topak等在不同膜下滴灌方案下证明调亏灌溉可节约25%的灌水量[22]。

以上研究结果显示,不同地区和不同试验条件下,得出适宜甜菜生长灌水量及土壤含水率存在一定差异,多偏重于甜菜产量、适宜灌水量及土壤含水率的研究,缺乏对于膜下滴灌甜菜高糖产量灌溉制度研究。同时,不同灌溉次数与灌水定额对作物生长及土壤水分布影响显著[23-26],而对甜菜产糖量的影响鲜有报道。新疆是典型干旱区气候,少雨蒸发量大,日照充足,是中国最大的甜菜生产基地,甜菜种植面积在8.6´104hm2,产糖量占全国的50%以上[27]。而不同灌水次数及定额对新疆膜下滴灌甜菜耗水规律研究及甜菜高糖产量还有待研究。本文在此基础上,以优化新疆膜下滴灌甜菜灌溉制度提高甜菜糖产量为目标,对不同灌水次数与灌水定额对甜菜生长、糖产量及水分利用效率进行为期2 a的试验研究,为新疆膜下滴灌甜菜灌溉制度制定提供理论依据。

1 材料与方法

1.1 试验区概况

试验分别于2016年4—10月和2017年4—10月在新疆农科院玛纳斯甜菜改良中心试验基地进行。试验区位于新疆维吾尔自治区玛纳斯县城东北方向5 km处,地理坐标为86°5¢~87°8¢E,43°7¢~45°20¢N。7—9月平均气温为21.8 ℃,有效积温为2 000 ℃,无霜期150~204 d,生长期(4—9月)日照时数为1 780 h,多年平均蒸发量为1 691 mm,2016年生育期降水量为182 mm,2017年为108 mm。试验采用甜菜品种为ST15140。土壤类型为灰漠土,土壤养分状况见表1。0~30 cm土壤质地良好,30~70 cm土壤质地较黏重。田间持水量均为36.1%(体积),平均容重均为1.42 g/cm3。

表1 土壤养分状况

1.2 试验设计

2 a试验采用膜下滴灌方式,按新疆甜菜基肥与出苗水标准在播种前施67.5 kg/hm2氮肥,112.5 kg/hm2磷肥,40.5 kg/hm2钾肥,播种后出苗灌水量为450 m3/hm2,4月中旬播种,10月上旬收获。当地推荐灌水定额为60 mm,频率为10次,经前期土壤入渗试验及灌水定额公式计算得出60 mm灌水定额下β=28.89%,计算公式如下[28]:

1 000=ρH(ββ)(1)

式中为灌水定额,mm,取60 mm;ρ为该时段土壤计划湿润层内土壤容重,g/cm3,取1.42 g/cm3;为计划湿润层深度,cm,本试验计划湿润层深度为90 cm;β为目标含水量(田间持水率乘以目标相对含水率),%;β为灌前土壤含水率,%,取21.72%;为土壤湿润比,%,取65.41%。

故本试验灌水定额设I1(45 mm),I2(60 mm)2个水平,灌水频率设F8(8次)、F9(9次)、F10(10次)3个水平,按不同灌溉定额不同次数灌溉布设6个灌水单因素处理,每个处理3组重复(表2)。采用随机区组排列,小区面积10 m×3 m(3个膜幅),试验区两侧设有6膜保护行。种植行距50 cm,株距20 cm,采用一膜两行一管种植模式;采用单翼迷宫式滴灌带,滴头间距30 cm,流量1.5 L/h,灌水量由水表控制。

表2 试验设计方案

1.3 测定方法

1.3.1 土壤含水率测定

分别在各处理第一次灌水前一天(6月4日、6月14日、6月19日)以及收获前一天(10月10日)用Trime水分测试仪分层测定土壤含水率,测试深度90 cm,每10 cm为1层。各处理在距甜菜种植行0、±0.125 m处垂直种植行方向共布设3根探管(图1),为评价灌溉制度对土壤含水率影响,考虑在测定水分前降雨对土壤含水率临时影响,利用以下公式对土壤含水率进行折算。公式(2)用于计算影响区域降雨总质量[29]:

=10-3 F·R·ρ(2)

式中为降雨量,mm;为降雨计算区域土壤面积,取1 m2;ρ为降雨密度,取1´103kg/m3;为计算区域降雨总质量,kg;10-3为雨量换算系数。

由公式(3)得出土壤体积含水率为[30]

式中θ为土壤体积含水率,%;θ为土壤质量含水率,%;ρ为土壤容重,为1.42g/cm3。

土壤质量含水率计算公式采用国家GB 7172-1987标准,为

式中m为烘干空铝盒质量,g;1为烘干前铝盒及土样质量,g;m为烘干后铝盒及土样质量,g。

由公式(5)得出土壤折算质量含水率计算公式为

将公式(5)带入(3)中得出土壤折算后体积含水率为

(6)

式中θ为土壤折算后体积含水率,%。

土壤相对含水率计算公式为[31]

式中θ为土壤相对含水率,%;为计算时段内土壤平均含水率,%;θ为土壤田间持水率,%。

注:单位为m

Note:Unit is m

图1 Trime埋设位置图

Fig.1 Location of Trime

1.3.2 生长指标测定

2 a的甜菜生长指标均于7月30日测定,选取小区中行具有代表性6棵植株定点观测甜菜株高、叶面积、块根质量。用直尺测量各处理甜菜株高、叶长宽,叶面积指数=(Σ0.7)/750(为叶长,为叶宽),块根质量用电子秤称量(精度0.05 g)。

1.3.3 叶片SPAD值测定

采用便携式叶绿素仪每次灌水前测定SPAD值,每处理选择同方向同位置的10片叶观测,取各处理生育期所测叶绿素值的平均值。

1.3.4 作物耗水量测定

作物生育期间耗水量采用水量平衡法计算,本试验区地下水埋深低于8 m,地下水对作物用水补给忽略不计;滴头灌水强度小于土壤入渗率,无地表径流与深层渗漏,即[32]:

式中ETc为作物耗水量,mm;R为时段内计划土壤有效降雨量(图2),mm;I为时段内灌水量,mm;Ds为0~90 cm深度土壤储水量变化量,mm。

1.3.5 产量、含糖率及产糖量测定

甜菜产量于10月上旬收获,由小区中间行去除头尾1.5 m后全部采收称量测产;含糖率采用垂度计测定甜菜的可溶性固形物含量:取样并切取1/2甜菜块根,沿块根直立45°角方向切取1.0 cm厚、中心条状块根,去除表皮,捣碎成汁,采用锤度计监测不同处理甜菜的可溶性固形物含量,含糖率(%)=可溶性固形物含量(%)´0.82;糖产量为甜菜产量与含糖率乘积。

1.3.6 水分利用效率计算

水分利用效率计算公式[33]为

式中WUE为作物水分利用效率,kg/(mm·hm2);为单位面积产量,kg/hm2;ETc为作物耗水量,mm。

产糖水分利用效率公式[33]为

式中SWUE为作物产糖水分利用效率,kg/(mm·hm2);为单位面积糖产量,kg/hm2;ETc为作物耗水量,mm。

1.4 数据分析

采用SPSS20.0和Excle2013软件进行数据统计及相关分析,差异显著性分析采用Duncan法(极显著<0.01,显著<0.05)。

2 结果与分析

2.1 灌溉制度对甜菜形态指标的影响

不同灌水次数与定额处理的甜菜株高、叶面积指数(LAI, leaf area index)、块根质量及灌前土壤含水率与相对含水率见表3。由表3知,2 a内,不同灌水次数处理的灌前土壤相对含水率表现为灌水8次小于50%,灌水9次介于50%~60%,灌水10次在60%以上。

灌水次数对甜菜株高、LAI、块根质量影响极显著(<0.01),灌水定额对甜菜块根质量影响显著(<0.05)。在2016年,F8水平下不同灌水定额对甜菜LAI影响显著(<0.05),在2017年影响极显著(<0.01)。2 a内,灌水定额与次数交互作用对甜菜株高、LAI、块根质量影响极显著(<0.01)。

2 a内灌水10次(I1F10与I2F10)处理的甜菜株高超过70 cm,显著高于其他处理(<0.05),灌水8次与9次无明显差异(>0.05);不同灌水定额水平下灌水次数对甜菜LAI影响显著表现为:I1F10> I1F9> I1F8,I2F10> I2F9> I2F8(<0.05),表明灌水次数增加能促进甜菜叶丛生长,而灌水定额对甜菜株高与叶面积指数无明显影响。

I1灌水定额下,2016年甜菜块根质量随灌水次数增加呈增大趋势,表现为I1F10>I1F9>I1F8,(<0.05);2017年I1F10的块根质量较I1F9、I1F8分别增加40.01%、78.5%(<0.05),I1F8与I1F9无明显差异(>0.05)。在I2水平下,2 a内I2F10处理块根质量显著高于I2F8、I2F9处理(<0.05),保持在800 g以上,I2F8与I2F9无明显差异(>0.05)。2 a数据表明,相同灌水次数下I2水平下甜菜块根质量显著高于I1,表现为,I2F8>I1F8,I2F9>I1F9,I2F10>I1F10,表明灌水定额增加能增加甜菜块根质量。

表3 不同灌溉制度对甜菜形态指标的影响

注:表中土壤含水率为灌前测定值,测定日期分别为6月4日(F10)、6月14日(F9)、6月19日(F8);*表示差异显著(<0.05),**表示差异极显著(<0.01);a、b、c等分别表示=0.05水平下差异显著,下同。

Note:Soil water content was measured before irrigation in the table, which were measured in 6/4(F10), 6/14(F9), 6/19(F8), respectively; * means significant difference (<0.05), while ** means extremely significant difference (<0.01). a, b and c means significant difference at=0.05 level, the same below.

2.2 不同灌溉制度对甜菜叶绿素值的影响

叶绿素含量是衡量植物养分状况、光合能力以及植物生长发育阶段的良好指示器[34]。2 a内不同灌溉制度对甜菜SPAD值影响见图3。由图知,在2 a内,SPAD值随灌水次数增加呈降低趋势;不同灌水次数下I1处理SPAD值显著高于I2处理(<0.05)。I1F8与I1F9处理SPAD值显著高于其他处理(<0.05),I2F10处理显著小于其他处理(<0.05)。表明甜菜SPAD值随灌水定额与次数增加呈降低趋势。

注:I1表示45 mm灌水定额,I2表示60 mm灌水定额。

2.3 不同灌溉制度对甜菜产量、产糖量的影响

不同灌溉制度对甜菜产量、含糖率、产糖量的影响见表4。由表4知,2 a内,灌水次数对甜菜的产量、含糖率影响极显著(<0.01),对产糖量无明显影响(>0.05);I1与I2灌水定额在F8水平下对甜菜产量影响显著(< 0.05),F9水平下对甜菜产量影响极显著(<0.01),F10水平对产量无明显影响(>0.05)。I1与I2灌水定额在F8水平下对甜菜含糖率无明显影响(>0.05);在F9水平下甜菜产糖量影响极显著(<0.01);在F10水平下甜菜产糖量无明显影响(>0.05)。2 a内,灌水定额与灌水次数交互作用对甜菜产量、含糖率、产糖量影响极显著(<0.01)。

于收获前测定土壤含水率折算后知,2 a内F8处理的土壤相对含水率降至50%以下;F10的土壤相对含水率保持在50%~60%之间;F9的土壤相对含水率在I1灌水定额下分别降至46.13%、49.63%,在I2灌水定额下分别降至53.12%、52.58%。

2 a内在I1水平下,I1F10处理的甜菜产量显著高于I1F8与I1F9(<0.05),2016年I1F8与I1F9无明显差异(>0.05),2017年I1F8与I1F9差异显著(<0.05)。在I2水平下,2 a内I2F10与I2F9无明显差异(>0.05),显著高于I2F8处理(<0.05);I2F8与I1F8无明显差异(>0.05,除2016年)I2F9产量较I1F9增加7.7%、7.4%(<0.05),I1F10与I2F10处理的甜菜产量无明显差异(>0.05)。

2 a内,I1水平下甜菜含糖率随灌水次数增加呈显著减小趋势,表现为:I1F8>I1F9>I1F10。在I2水平下,2016年甜菜含糖率表现为:I2F8>I2F9>I2F10(<0.05);2017年I2F8与I2F9无明显差异(>0.05),I2F10处理的甜菜含糖率显著小于其他处理(<0.05)。2 a内不同灌水定额水平下甜菜含糖率无明显差异(>0.05)。

在I1水平下,2 a内F9的产糖量显著小于F8(<0.05),F8与F10无明显差异(>0.05)。在I2水平下,2016年F8与F9糖产量显著高于F10(<0.05),F8与F9无明显差异(>0.05),I2F9的甜菜产糖量达到1.92×104kg/hm²;在2017年I2F9的甜菜产糖量达到1.97×104kg/hm²,较I2F8与I2F10增加6.48%(<0.05),I2F8与I2F10无明显差异(>0.05)。2 a内不同灌水定额下,I2F9较I1F9分别增加糖产9.7%、9.4%(<0.05),I1F8与I2F8、I1F10与I2F10无明显差异(>0.05)。

表4 不同灌溉制度对甜菜产量、含糖率及产糖量的影响

注:表中土壤含水率为收获前测定值,测定日期为10月10日

Note: Soil water content was measured before harvest in the table, which measured in 10/10

总体看来,灌水9次时增加15 mm灌水定额能显著提高甜菜产量与糖产量;而灌水次数增加会导致甜菜含糖率降低,灌水定额增加对含糖率无明显影响。

2.4 不同灌溉制度对甜菜耗水量、水分利用效率的影响

不同灌溉制度对甜菜耗水量(ETc,evapotranspiration)、水分利用效率(WUE,water use efficiency)、产糖水分利用效率(SWUE,sugar water use efficiency)的影响见表5。分析表5知,ETc随灌溉定额增加呈增大趋势,WUE随灌溉定额增加呈减小趋势。2 a内,灌水次数对甜菜ETc、WUE无明显影响(>0.05),灌水定额对ETc、WUE、SWUE有极显著影响(<0.01);2016年灌水次数增加对SWUE影响显著(<0.05),在2017年无明显影响(>0.05);在2 a内灌水次数与灌水定额交互作用对甜菜ETc、WUE、SWUE影响极显著(<0.01)。

表5 不同灌溉制度对甜菜耗水量、水分利用效率及产糖水分利用效率的影响

2 a内,I2处理的甜菜ETc明显大于I1处理(<0.05)。在I1水平下,F8与F9的ETc无明显差异(>0.05),F10处理的ETc显著大于其他处理(<0.05)。在I2处理下,2016年甜菜ETc随灌水次数增加呈明显增大趋势,表现为I2F10>I2F9>I2F8(<0.05),2017年I2F8与I2F9无明显差异(>0.05),I2F10处理的ETc为669.45 mm,显著大于其他处理(<0.05)。

水分利用效率是指作物消耗单位水量生产出的同化量。由表6知,在2 a内I1灌水定额下各处理无明显差异(>0.05);在I2水平下,2016年F8与F9处理的WUE显著大于F10(<0.05),F8与F9无明显差异(>0.05),在2017年无明显差异(>0.05)。在2 a内I1处理的WUE显著大于I2(<0.05),表明灌水定额增加会减小WUE。

产糖水分利用效率是评价甜菜产糖能力的指标。I1水平下,在2016年随灌水次数增加SWUE呈显著下降趋势(<0.05);2017年F8与F9处理的SWUE无明显差异(>0.05),F10处理SWUE较F8、F9减小5.5、3 kg/(mm·hm2)。在I2水平下,2 a内F8与F9无明显差异,F10处理显著小于F8、F9(<0.05)。2 a内相同灌水次数下I2处理的甜菜SWUE明显小于I1(<0.05),表明灌水定额增加同时也会减小SWUE。

总之,ETc随灌溉定额增大呈增大趋势,灌水次数对甜菜WUE无明显影响,灌水定额增加会明显降低WUE与SWUE。灌水10次会明显降低SWUE。

3 讨 论

前人通过新疆膜下滴灌甜菜方法测得甜菜株高介于50~60 cm之间,LAI均在4.0以上[35]。本次试验F8与F9处理的甜菜株高与前人相似,F10处理的甜菜株高均在70 cm以上。作物对土壤含水率反应较为敏感[36-37],土壤含水率是前期制约甜菜生长重要因素,本试验灌水前1 d测得F8、F9、F10土壤相对含水率分别位于50%以下、50%~60%、60%以上,2 a试验表明灌水次数对甜菜株高、LAI影响极显著,这与Radin等提出灌水频率对棉花植株生殖生长期影响显著的结论相吻合[38],说明灌水次数对前期土壤含水率及甜菜生长起决定性作用;陈凯丽等通过小麦滴灌试验表明52.5与60 mm灌水定额对冬小麦生长与产量无明显影响[39],本次研究表明在2 a内F9、F10水平下灌水定额对甜菜株高、LAI无明显影响,这与陈凯丽呈相同规律,但F8水平下灌溉定额对甜菜LAI影响显著,说明灌水8次时土壤含水率位于50%以下时,甜菜生长受到影响,应该增加灌水定额。

王唯逍等研究表明适度减少灌水量有利于水稻叶片叶绿素形成[40],李智等通过试验表明过多水分供应不会增加叶绿素含量[41]。而本次试验说明甜菜叶绿素随灌水定额与次数增加呈下降趋势,与王唯逍等结果相似。

Doorenbos等研究表明土壤相对含水率保持在50%~60%时甜菜可获得高产[42]。Tognetti等表明当缺水程度达到田间持水量50%时,甜菜减产25%[43]。樊福义等通过膜下滴灌甜菜试验表明灌水8次时产量最高为9.07´104kg/hm2[44]。本次试验表明灌水8次时产量较低,与樊福义结论不同,因为樊福义试验年降雨量为350 mm,为丰雨年,而灌水次数增加能提高甜菜产量,这与灌水次数增加能增加作物产量[45-47]结论吻合,土壤含水率介于51%~56%产量较高,这与Doorenbos等[42]研究结果吻合。李智试验表明甜菜产量随甜菜LAI与土壤含水率增加而增加,含糖率与土壤含水率呈负相关[15,41]。本次试验I2F9处理获得双高产,2 a内产糖量较I2F10分别增加4.3%、6.5%,I2F9的甜菜LAI小于与I1F10、I2F10,但同时获得高产,说明土壤含水率是影响甜菜LAI与产量的根本原因,当土壤相对含水率达到50%以上时获得高产;土壤含水率对含糖率影响主要体现在灌水次数上,随灌水次数增加而降低。

Yildirim在安卡拉对甜菜进行充分灌溉后测得甜菜耗水量为865 mm[48];Barbanti等对甜菜进行亏缺与充分灌溉处理后得出甜菜耗水量在567~1 262 mm之间[49];Katerji等在黏土与壤土上充分灌溉后测得甜菜耗水量在731~836 mm之间[50]。本次试验在2 a不同灌溉制度下测得甜菜耗水量在475~721 mm之间,耗水量随灌溉定额增加而增大,2 a内I2F10处理耗水量分别为669、721 mm,与前人结果相似。孙乌日娜通过试验表明甜菜ETc随灌水量增加而增大,WUE随灌水量增加而减小[18]。本次试验表明I2灌水定额的WUE明显低于I1处理,与前人结果相符,但灌水次数对ETc、WUE无明显影响。李智研究表明甜菜产量与耗水量呈正比[41],本次试验与李智结论相符,而WUE与ETc呈反比,证明WUE随甜菜产量增加而呈减小趋势。甜菜属于经济作物,应在保证高产量与产糖量前提下提高WUE与SWUE,因此以60 mm灌水定额灌水9次为更适宜新疆膜下滴灌甜菜制度,此外,新疆传统膜下滴灌甜菜灌溉定额为600 mm,该灌溉制度相比传统灌溉模式可节水10%。

4 结 论

1)在新疆膜下滴灌甜菜制度下,灌水次数增加能增加甜菜叶面积指数、产量,但会降低含糖率与产糖水分利用效率,对甜菜的耗水量、水分利用效率无显著影响(>0.05);基于45 mm灌水定额增加15 mm灌水定额会增加甜菜产量、耗水量、降低水分利用效率与产糖水分利用效率,对含糖率与叶面积指数无明显影响。甜菜SPAD值随灌水次数与定额增加呈下降趋势。

2)甜菜产量增加会导致水分利用效率降低,甜菜属经济作物,从经济高产及新疆典型干旱区地域特征角度分析,灌水9次土壤相对含水率低于50%时,增加15 mm灌水定额2 a的糖产分别为1.92×104和1.97×104kg/hm²,能增加糖产量9.4%~9.7%左右,产量与灌水10次无明显差异(>0.05),但对含糖率无明显影响(>0.05),因此灌水9次,60 mm灌水定额更适应新疆膜下滴灌甜菜制度。

[1] 金巍,刘双双,张可,等. 农业生产效率对农业用水量的影响[J]. 自然资源学报,2018,33(8):1326-1339. Jin Wei, Liu Shuangshuang, Zhang Ke, et al. Influence of agricultural production efficiency on agricultural water consumption[J]. Journal of Natural Resources, 2018, 33(8): 1326-1339. (in Chinese with English abstract)

[2] 谢文宝,陈彤,刘国勇. 新疆农业水资源利用与经济增长脱钩关系及效应分解[J]. 节水灌溉,2018(4):69-72,77. Xie Wenbao, Chen Tong, Liu Guoyong. Decoupling relationship and effect decomposition of agricultural water resources utilization and economic Growth in Xinjiang[J]. Water Saving Irrigation, 2018(4), 69-72, 77. (in Chinese with English abstract)

[3] 李明思,郑旭荣,贾宏伟,等. 棉花膜下滴灌灌溉制度试验研究[J]. 中国农村水利水电,2001(11):13-15. Li Mingsi, Zheng Xurong, Jia Hongwei, et al. Experimental research on under mulch drip irrigation regime for cotton[J]. China Rural Nater and Hydropower, 2001(11): 13-15. (in Chinese with English abstract)

[4] 刘新永,田长彦. 棉花膜下滴灌盐分动态及平衡研究[J]. 水土保持学报,2005,19(6):82-85. Liu Yongxin, Tian Changyan. Study on dynamic and balance of salt for cotton under plastic mulch in south Xinjiang[J]. Journal of Soil and Water Conservation, 2005, 19(6): 82-85. (in Chinese with English abstract)

[5] 张伟,吕新,李鲁华,等. 新疆棉田膜下滴灌盐分运移规律[J]. 农业工程学报,2008,24(8):15-19. Zhang Wei, Lü Xin, Li Luhua, et al. Salt transfer law cotton field with drip irrigation under the plastic mulch in Xinjiang region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 15-19. (in Chinese with English abstract)

[6] 王昱,赵廷红,李波,等. 西北内陆干旱地区农户采用节水灌溉技术意愿影响因素分析[J]. 节水灌溉,2012(11):50-54 Wang Yu. Zhao Tinghong, Li Bo, et al. Affecting factors of farmers willingness to adopt water-saving technology in northwest arid region of China[J]. Water Saving Irrigation, 2012(11): 50–54. (in Chinese with English abstract)

[7] 王敏,王海霞,韩清芳,等. 不同材料覆盖的土壤水温效应及对玉米生长的影响[J]. 作物学报,2011,37(7):1249-1258. Wang Ming, Wang Haixia, Han Qiangfang, et al. Effects of different mulching materials on soil water, temperature, and corn growth[J]. Acta Agronomica Sinica, 2011, 37(7): 1249-1258. (in Chinese with English abstract)

[8] Hassanli A M, Ahmadirad S, Beecham S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency[J]. Agric. Water Manage, 2011, 97(2): 357-362.

[9] 冶军,陈军,朱新在. 不同灌溉方式对新疆甜菜生长发育的影响[J]. 现代农业科技,2009(7):15-16. Ye Jun, Chen Jun, Zhu Xinzai. Effects of different irrigation ways on the growth and development of sugarbeet in Xinjiang[J]. Modern Agricultural Science and Technology. 2009(7):15-16. (in Chinese with English abstract)

[10] 赵长星,马东辉,王月福,等. 施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响[J]. 应用生态学报,2008(11):2388-2393. Zhao Changxin, Ma Donghui, Wang Yuefu, et al. Effects of nitrogen application rate and post-anthesis soil moisture content on the flag leaf se- nescence and kernel weight of wheat[J]. Chinese Journal of Applied Ecology. 2008(11): 2388-2393. (in Chinese with English abstract)

[11] 马东辉,赵长星,王月福,等. 施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J]. 生态学报,2008(10):4896-4901. Ma Donghui, Zhao Changxin, Wang Yuefu, et al. Effects of nitrogen application and soil moisture content after flowering on photosynthetic characteristics and yield of flag leaves of wheat[J]. Chinese Journal of Applied Ecology. 2008(10): 4896-4901. (in Chinese with English abstract)

[12] 侯玉虹,尹光华,刘作新,等. 土壤含水量对玉米出苗率及苗期生长的影响[J]. 安徽农学通报,2007(1):70-73. Hou Yuhong, Yi Guanghua, Liu Zuoxin, et al. Effects of soil water contents on seedlings emergence rate and seeding growth of maize[J]. Anhui Agricultural Science Bulletin. 2007(1): 70-73. (in Chinese with English abstract)

[13] Kosobryulchov A A, Bil K Y, Nishio J N. Sugar beet photosynthesis under conditions of increasing water defcciency in soil and protective effects of a low- molecular-weight alcohol[J]. Applied Biochemistry and Microbiology, 2004, 40(1):668-674.

[14] Fabeiro C, Martin d S O F, Lopez R, et al. Production and quality of the sugar beet () cultivated under controlled deficit irrigation conditions in a semi-arid climate[J]. Agricultural Water Management, 2003, 62(3): 215-227.

[15] 李智. 膜下滴灌条件下甜菜水分代谢特点的研究[D].呼和浩特:内蒙古农业大学,2015 Li Zhi. The Physiological Effects on Coupling of Water and Nitrogen in Sugar Beets With Drip Irrigation under Plastic Mulch[D]. Hohhot: Inner Mongolla Agricultural University, 2015. (in Chinese with English abstract)

[16] 冯泽洋,李国龙,李智,等. 调亏灌溉对滴灌甜菜生长和产量的影响[J]. 灌溉排水学报,2017,36(11):7-12. Feng Zeyang, Li Guolong, Li Zhi, et al. Effects of regulated deficit drip irrigation on growth and yield of sugar beet[J]. Journal of Irrigation and Drainage. 2017, 36(11): 7-12. (in Chinese with English abstract)

[17] 董心久,杨洪泽,高卫时,等. 灌水量对滴灌甜菜生长发育及产质量的影响[J]. 中国糖料,2013(4):37-38,41. Dong Xinjiu, Yang Hongze, Gao Weishi, et al. Effect of drip irrigation amount on sugar beet growth, yield and quality[J]. Sugar Crops of China. 2013(4): 37-38,41. (in Chinese with English abstract)

[18] 孙乌日娜. 膜下滴灌甜菜水分利用效率的研究[D]. 呼和浩特:内蒙古农业大学,2013. Sun Wurina. Study on Water Use Efficiency of Sugar Beet with Drip Irrigation under Mulch[D]. Hohhot: Inner Mongolla Agricultural University,2013. (in Chinese with English abstract)

[19] 李阳阳,费聪,崔静,等. 滴灌甜菜对糖分积累期水分亏缺的生理响应[J]. 中国生态农业学报,2017,25(3):373-380. Li Yangyang, Fei Cong, Cui Jing, et al. Physiological response of sugar beet() to water deficit at sugar accumulation stage under drip irrigation[J]. Chinese Journal of Eco-Agriculture. 2017, 25(3): 373-380. (in Chinese with English abstract)

[20] 李阳阳,费聪,崔静,等. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报,2016,42(11):1727-1732. Li Yangyang, Fei Cong, Cui Jing, et al. Compesation response of drip-irrigated sugar beets () to different water deficits during storage root development[J]. Acta Agronomica Sinica. 2016, 42(11): 1727-1732. (in Chinese with English abstract)

[21] 李阳阳,耿青云,费聪,等. 滴灌甜菜叶丛生长期对干旱胁迫的生理响应[J]. 应用生态学报,2016,27(1):201-206. Li Yangyang, Geng Qingyun, Fei Cong, et al. Physiological responses of sugar beet () to drought stress during vegetative development period under drip irrigation[J]. Chinese Journal of Applied Ecology. 2016, 27(1): 201-206. (in Chinese with English abstract)

[22] Topak R, Su Heri S, Acar B. Effect of different drip irrigation regimes on sugar beet) yield, quality and water use efficiency in Middle Anatolian, Turkey [J]. Irrigation Science, 2011, 29(1): 79-89.

[23] 董平国,王增丽,温广贵,等.不同灌溉制度对制种玉米产量和阶段耗水量的影响[J]. 排灌机械工程学报,2014,32(9):822-828. Dong Pingguo, Wang Zengli, Wen Guanggui, et al. Effects of irrigation schedule on water consumption and yield of seed maize[J]. Journal of Drainage and Irrigation Machinery Engineering. 2014, 32(9): 822-828. (in Chinese with English abstract)

[24] 王振华,杨培岭,郑旭荣,等. 新疆现行灌溉制度下膜下滴灌棉田土壤盐分分布变化[J]. 农业机械学报,2014,45(8):149-159. Wang Zhenhua, Yang Peiling, Zheng Xurong, et al. Soil salt dynamics in cotton fields with mulched drip irrigation under the existing irrigation system in Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery. 2014, 45(8): 149-159. (in Chinese with English abstract)

[25] 王峰,孙景生,刘祖贵,等. 不同灌溉制度对棉田盐分分布与脱盐效果的影响[J]. 农业机械学报,2013,44(12):120-127. Wang Feng, Sun Jingsheng, Liu Zugui, et al. Effect of different irrigation scheduling on salt distribution and leaching in cotton field[J]. Transactions of the Chinese Society for Agricultural Machinery. 2013, 44(12): 120-127. (in Chinese with English abstract)

[26] Collins W. Remote sensing of crop type and maturity [J]. Photogrammetric Engineering and emote Sensing, 1978, 44(1): 43-55.

[27] 刘升廷,王燕飞,高卫时,等. 对我国甜菜种业发展的思考[J]. 中国糖料,2017,39(2):71-74. Liu Shengting, Wang Yanfei, Gao Weishi, et al. Research progress of proteomics in sugar beet[J]. Sugar Crops of China. 2017, 39(2): 71-74. (in Chinese with English abstract)

[28] 李明思,康绍忠,孙海燕. 点源滴灌滴头流量与湿润体关系研究[J]. 农业工程学报,2006,22(4):32-35. Li Mingsi, Kang Shaozhong, Sun Haiyan. Relationships between dripper discharge and soil wetting pattern for drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2006, 22(4): 32-35. (in Chinese with English abstract)

[29] 张国辉,江行久. 利用土壤含水量资料估算区域降水渗透量[J]. 东北水利水电,2005(8):53-54. Zhang Guohui, Jiang Xingjiu. Estimation of regional precipitation infiltration using soil water content data[J]. Water Resources & Hydropower of Northeast China. 2005(8): 53-54. (in Chinese with English abstract)

[30] 龚元石,廖超子,李保国. 土壤含水量和容重的空间变异及其分形特征[J]. 土壤学报,1998,35(1):10-15. Gong Yuanshi, Liao Chaozi, Li Baoguo. Spatial varibility and fractal dimension for soil water content and bulk density[J]. Acta Pedologica Sinica. 1998, 35(1): 10-15. (in Chinese with English abstract)

[31] 柴红敏,蔡焕杰,王健,等. 亏缺灌溉试验中土壤水分胁迫水平设置新指标[J]. 中国农村水利水电,2009(6):14-17. Chai Hongmin, Cai Huanjie, Wang Jian, et al. A new index for setting level of soil water in deficit irrigation experimentation[J]. China Rural Water and Hydropower. 2009(6): 14-17.(in Chinese with English abstract)

[32] James L G. Principles of farm irrigation system design[J]. Cab International Wallingford Uk Pp, 1988. 12(4): 279-291.

[33] He J. Best Management Practice Development with the Ceres-Maize Model for Sweet Corn Production in North Florida[D].Florida: University of Florida. 2008.

[34] 宫兆宁,赵雅莉,赵文吉,等. 基于光谱指数的植物叶片叶绿素含量的估算模型[J]. 生态学报,2014,34(20):5736-5745. Gong Zhaoning, Zhao Yali, Zhao Wenji, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica. 2014, 34(20): 5736-5745. (in Chinese with English abstract)

[35] 胡华兵. 新疆甜菜高产高效种植技术研究[D]. 石河子:石河子大学,2014. Hu Huabin. Study of Yield and High Efficiency Cultivation Technology of Sugar Beet in Xinjiang[D]. Shihezi: Shihezi University, 2014. (in Chinese with English abstract)

[36] 郑国保,张源沛,孔德杰,等. 不同灌水次数对日光温室番茄土壤水分动态变化规律的影响[J]. 中国农学通报,2011,27(22):192-196. Zheng Guobao, Zhang Yuanpei, Sun Dejie, et al. Research on soil water dynamics of greenhouse tomato by different irrigation frequency[J]. Chinese Agricultural Science Bulletin. 2011, 27(22): 192-196. (in Chinese with English abstract)

[37] 霍东亮,孔维萍. 调亏灌溉对作物土壤含水量及生长特性的影响[J]. 农业科技与信息,2017(22):73-74. Huo Dongliang, Kong Weiping. Effects of regulated deficit irrigation on soil water content and growth characteristics of crops[J]. Agricultural Science-Technology and Information,2017(22): 73-74. (in Chinese with English abstract)

[38] Radin J W, Mauney J R, Kerridge P C, et al, Water up take by cotton roots during fruit filling In relation to irrigation frequency[J]. Crop Sci. 1989(4): 1000-1005.

[39] 陈凯丽,赵经华,马亮,等. 不同灌水定额对北疆小麦生长和产量的影响[J]. 节水灌溉,2016(5):19-22. Chen Kaili, Zhao Jinghua, Ma Liang, et al. Effects of different irrigation quota of drip irrigation in the northern Xinjiang region of the growth and yield of wheat[J]. Water Saving Irrigation. 2016(5): 19-22. (in Chinese with English abstract)

[40] 王唯逍,刘小军,朱艳,等. 不同土壤水分处理对水稻光合特性及产量的影响[J]. 生态学报,2012,32(22):7053-7060. Wang Weixiao, Liu Xiaojun, Zhu Yan, et al. Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice[J]. Acta Ecologica Sinica. 2012, 32(22): 7053-7060. (in Chinese with English abstract)

[41] 李智,李国龙,刘蒙,等. 膜下滴灌条件下甜菜水分代谢特点的研究[J]. 节水灌溉,2015(9):52-56. Li Zhi, Li Guolong, Liu Meng, et al. Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation[J]. Water Saving Irrigation. 2015(9): 52-56. (in Chinese with English abstract)

[42] Doorenbos Y, Kassam A H. Yield response to water[J]. Irrigation & Agricultural Development, 1986, 33(6): 257-280.

[43] Tognetti R, Palladino M, Minnocci A, et al. The response of sugar beet to drip and low-pressure sprinkler irrigation in Southern Italy[J]. Agricultural Water Management, 2003, 60(2): 135-155.

[44] 樊福义,苏文斌,宫前恒,等. 高寒干旱区膜下滴灌甜菜灌溉制度的研究[J]. 中国糖料,2017,39(6):37-39,42. Fan Fuyi, Su Wenbin, Gong Qianheng, et al. Effects of active organic calcium-magnesium-silicon fertilizer on yield, quality and benefits of sugarcane[J]. Sugar Crops of China, 2017, 39(6): 37-39, 42. (in Chinese with English abstract)

[45] 朱文新,孙继颖,高聚林,等. 深松和灌水次数对春玉米耗水特性及产量的影响[J]. 玉米科学,2016,24(5):75-82. Zhu Wenxin, Sun Jiying, Gao Julin, et al. Effect of subsoiling and irrigation frequency on water consumption characteristics and yield of super high yield spring maize[J]. Journal of Maize Sciences. 2016, 24(5): 75-82. (in Chinese with English abstract)

[46] 王伟. 不同灌水次数下施氮量对优质春小麦产量与品质的影响[D]. 乌鲁木齐:新疆农业大学,2013. Wang Wei. The Nitrogen Application Rate on Wheat Yield and Quality of High-quality Spring Wheat under Different Irrigation Times[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract)

[47] 李云,李金霞,李瑞奇,等. 灌水次数和施磷量对冬小麦养分积累量和产量的影响[J]. 麦类作物学报,2010,30(6):1097-1103. Li Yun, Li Jinxia, Li Ruiqi, et al. Effect of irrigation times and phosphorus application rate on nutrient accumulation and grain yield of winter wheat[J]. Journal of Triticeae Crops. 2010, 30(6): 1097-1103. (in Chinese with English abstract)

[48] Yildirim O. Sugar Beet Yields Response to Surface Drip and Subsurface Irrigation Methods[D]. Wikipedia: University of Ankara, 1990.

[49] Barbanti L, Monti A, Venturi G. Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes[J]. Ann Appl Bio. 2010, 150(2): 197–205.

[50] Katerji N, Mastrorilli M. The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region[J]. Euro JAgron. 2009, 30(2): 95–100.

Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency

Wang Zhenhua1,2, Yang Binlin1,2, Xie Xiangwen3,4※, Wang Zeyu4, Yang Hongze5, Dong Xinjiu5

(1.832000,; 2.832000,; 3.100083,; 4.830091,; 5.830091,)

In this study, we analyzed the effects of different drip irrigation regimes under plastic film on sugar beet yield and water use efficiency in Xinjiang of China. Drip irrigation under plastic film had been widely used in the arid areas of northwest China, especially in Xinjiang for saving water and fertilizer, increasing temperature of soil and preservation of soil moisture. The drip irrigation regimes of sugar beet under plastic film had a significant effect on increasing sugar beet root yield compared with traditional irrigation regimes. Two irrigation water quota (45 mm, 60 mm) and three irrigation frequency (eight, nine, ten) were combined to six treatments based on traditional drip irrigation regimes of sugar beet under plastic film in Xinjiang for suitable drip irrigation regimes under plastic film. The experiment was conducted during 2016 and 2017 at the Sugar Beet Improvement Center in Manasi, Xinjiang. The effects of different irrigation treatments on height and weight of sugar beet, leaf area index, root yield, sugar yield, percentage of sugar content, soil water content, evapotranspiration and water use efficiency were investigated. The water consumption of sugar beet was indicated combined with the soil water content and the suitable drip irrigation regimes under plastic film was proposed. The results showed that the increase of irrigation frequency could increase leaf area index, weight of sugar beet root and root yield, decreased percentage of sugar content and had no significant (> 0.05) effect on evapotranspiration and sugar beet water use efficiency. The increase of irrigation water quota were not significant effect on leaf area index and percentage of sugar content, increased weight of sugar beet root and evapotranspiration and decreased water use efficiency of sugar beet. In addition, The SPAD value was decreased as the increase of irrigation water quota and irrigation frequency. By irrigation frequency and water quota interaction, the root yield of 45 mm and 60 mm irrigation water quota at frequency of eight were significant decreased, and percentage of sugar content and water use efficiency of 45 mm and 60 mm irrigation water quota at frequency of eight were decreased for the soil relative water content were under 50%. The soil relative water content was under 50% for 45 mm irrigation water quota at frequency of nine, and was more than 50% when 45 mm irrigation water quota at frequency of nine increased 15 mm. The weight of root yield was increased and root yield was increased by 7.4%-7.7% with the sugar yield increased by 9.4%-9.7% as the increase of 15 mm of 45 mm irrigation water quota at frequency of nine. The height of sugar beet, leaf area index were significant (<0.05) higher than other irrigation frequencies for ten irritation frequency which the soil relative water content was more than 50%. The ten irrigation frequency was not significant (>0.05) compared with nine irrigation frequency at 60 mm irrigation water quota, but the sugar yield of sugar beet was significant (<0.05) less than nine irrigation frequency for 60 mm irrigation water quota. As increased 15 mm irrigation water quota for ten irrigation frequency at 45 mm irrigation water quota, the evapotranspiration was increased, the water use efficiency was decrease and root yield, percentage of sugar content and sugar yield of sugar beet had no significant difference. The results indicated that the nine irrigation frequency at 60 mm water quota was the suitable irrigation regimes of sugar beet under plastic film in Xinjiang for the lack of rain and sufficient sunshine, which saving 10% irrigation water compared with traditional irrigation regimes of sugar beet under plastic film.

irrigation; crops; soil moisture; root yield of sugar beet; sugar yield of sugar beet; water use efficiency

2018-07-04

2019-01-12

国家糖料产业体系水分管理与节水栽培岗位(CARS-170202);国家重点研发计划“经济作物水肥一体化技术模式研究与应用(2017YFD0201506)”

王振华,河南扶沟人,教授,博士生导师,主要从事干旱区节水灌溉理论与技术研究。Email:wzh2002027@163.com

谢香文,甘肃民勤人,研究员,研究方向为农业节水。Email:xiexw@sina.cn

10.11975/j.issn.1002-6819.2019.08.019

S275.6;S566.3

A

1002-6819(2019)-08-0158-09

王振华,杨彬林,谢香文,王则玉,杨洪泽,董心久. 灌溉制度对膜下滴灌甜菜产量及水分利用效率的影响[J]. 农业工程学报,2019,35(8):158-166. doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org

Wang Zhenhua, Yang Binlin, Xie Xiangwen, Wang Zeyu, Yang Hongze, Dong Xinjiu. Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 158-166. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org

猜你喜欢
甜菜利用效率定额
天然岩沥青混合料路面补充预算定额编制分析
中国耕地低碳利用效率时空演变及其驱动因素
浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响
甜菜种植与成本收益调查分析
灌区灌溉水利用效率分析与节水改造研究
基于LUBA模型的煤炭矿山企业定额编制研究
建筑工程预结算中的定额与清单计价应用
工程造价市场化改革下定额的再认识与建议
辣椒甜菜,各有所爱
当食物成为艺术创作的燃料