华 博,赵建军,刘长卿,杜岳峰,毛恩荣,宋正河
重型拖拉机电液提升器插装式比例提升阀性能仿真与试验
华 博1,赵建军2,刘长卿1,杜岳峰1,毛恩荣1,宋正河1※
(1. 中国农业大学现代农业装备优化设计北京市重点实验室,北京 100083; 2. 中国石化石油工程技术研究院,北京 100101)
为更准确地反映重型拖拉机电液提升器比例提升阀的本质特性,该文剖析了比例提升阀中各液压组件的内部结构和工作机理,并应用现代控制理论状态空间法建立了基于边界条件的比例提升阀非线性数学模型,应用MATLAB/ Simulink搭建其仿真模型,基于四阶龙格库塔算法对其动、静态性能进行了仿真分析,揭示了其内部阀芯的运动规律。仿真结果表明:在静态性能方面,比例提升阀平均负载补偿压力约为1.5 MPa,流量基本稳定在62 L/min附近,具有良好的负载压力补偿和稳态调速特性;在动态性能方面,比例提升阀系统输出流量波动受负载变化影响小,且具有良好的动态调速性能。基于闭心式负载敏感液压系统试验平台,开展了比例提升阀稳态流量特性和动态性能试验,试验结果表明:比例提升阀静态流量输出平稳,回程误差小于5%,当负载阶跃变化时,比例提升阀可实时进行压力补偿,补偿压力约为1.5 MPa,液压冲击小,具有良好的稳态调速特性,满足重型拖拉机电液提升器田间作业需求,该研究可为拖拉机液压系统关键零部件建模仿真和试验分析提供参考。
拖拉机;模型;比例提升阀;电液悬挂系统;动态特性
电液提升器作为拖拉机悬挂作业机组的关键液压零部件,用于控制悬挂农具的升降,其性能优劣直接影响拖拉机田间作业质量和效率[1-6]。目前,国内拖拉机电液提升器核心控制阀性能已难以适应复杂恶劣的田间作业环境。随着螺纹插装式电液比例阀发展日趋完善,其易维护、可靠性强和控制精度高等优势愈发明显[7-11],已逐步取代传统液压阀成为拖拉机电液提升器核心控制阀设计的首选。
国内外部分研究学者和研究机构在比例阀结构性能优化、控制策略研究、建模分析和试验验证等方面进行了大量研究。李明生等针对不同节流口的流量特性,建立了比例控制阀数学模型和仿真模型,得到了阀结构和性能参数对开闭过程流量动态特性的影响[12-15]。文献[16]利用解析法经拉普拉斯变换建立了优先阀简化数学模型,基于Simulink仿真分析了设计变量;文献[17]对建立的阀芯力平衡方程、流量方程在工作点附近进行小增量线性化处理,利用拉氏变换建立数学模型,基于AMESim对影响阀动静态特性较大的3个参数进行了仿真分析;文献[18]对平衡阀数学方程进行Laplace变换,得到平衡阀的动态响应特性方程,基于AMESim中的HCD建立动态仿真模型,研究了平衡阀不同结构参数对动态性能的影响;文献[19]采用传递函数法建立了高速开关阀的数学模型,并仿真计算了控制腔压力响应曲线;文献[20-27]采用传递函数法构建了阀控缸位置系统模型,液压元件存在非线性、难以建立精确数学模型问题,利用AMESim和MATLAB/Simulink的各自优势建立了联合仿真模型,进行了仿真分析;文献[28]在对液压方程进行线性化和拉氏变换后建立了比例流量阀简化数学模型,针对采用传递函数法分析存在困难的问题,利用SimulationX软件建立了仿真模型,对阀性能特性进行了分析。文献[29]研究了提升阀系统的动态建模技术,基于传递函数法构建了系统的非线性和线性模型,仿真分析了先导级入口面积对阀性能的影响。上述研究均只针对某种单一阀体进行建模,而且在比例阀的建模过程中没有充分考虑非线性因素和边界条件的影响,在经过线性化近似处理后,难以反映其本质特性,降低了数学模型的准确性。
为此,本文在前期研究结果和对提升阀工作原理充分理解的基础上[30-31],选择部分状态变量,运用状态空间法建立基于边界条件的比例提升阀非线性数学模型,模型充分考虑了所有非线性特征,符合液压元件实际工作特点;应用MATLAB/Simulink搭建仿真模型,通过选择合理的仿真参数,基于四阶龙格-库塔算法对其动、静态性能进行仿真分析;基于负载敏感液压系统室内试验平台,对电液提升器插装式比例提升阀进行了试验研究,通过与仿真结果进行对比,验证了比例提升阀数学模型的正确性。
重型拖拉机电液提升器比例提升阀、下降阀液压系统原理如图1所示,比例下降阀即两位两通比例换向阀工作过程可以看作是提升过程的反向操作,本文主要针对比例提升阀作进一步研究。比例提升阀由两位三通比例换向阀、定差减压阀以及阻尼孔组成,用于控制液压缸提升悬挂农具, 其额定压力为20 MPa,额定流量为60 L/min。两位三通比例换向阀和定差减压阀选用螺纹 插装阀,具有零泄漏、结构紧凑、易维护和可靠性高等 优点。
1. 单向阀 2. 球形梭阀 3,4. 固定节流阀 5. 定差减压阀 6. 两位三通比例换向阀 7. 直动式溢流阀 8. 两位两通比例换向阀 9. 液压缸
1. One-way valve 2. Spherical shuttle valve 3,4. Fixed throttle 5. Fixed differential pressure relief valve 6. 2 position-3 way proportional directional valve 7. Direct relief valve 8. 2 position-2 way proportional directional valve 9. Hydraulic cylinder
注:A为集成阀块;P为供油压力口;T为回油口;LSIN为负载压力反馈输入口;LSOUT为负载压力反馈输出口。
Note: A is integrated valve block, P is pressure inlet of oil, T is oil return port, LSINis feedback inlet of load pressure, LSOUTis feedback outlet of load pressure
图1 电液提升器比例提升阀、下降阀液压系统原理图
Fig.1 Schematic diagram of hydraulic system for proportional raising valve and descending valve of electro-hydraulic hitch
当两位三通比例换向阀不通电时,由其内部的单向阀将提升液压缸锁止,安全溢流阀与两位三通比例换向阀并联,从而限制液压缸的最高工作压力。在比例提升阀液压系统回路中,由于采用定差减压阀对两位三通比例换向阀进口压力进行了串联压力补偿,所以液压缸提升速度不受负载变化的影响,而只与换向阀阀口开度有关,具有良好的速度刚性,宜用在重型拖拉机悬挂作业机组犁耕作业等负载波动大、速度要求平稳的大功率场合。
比例提升阀包括两位三通比例换向阀、定差减压阀及单向阀3部分,其中两位三通换向阀是由1个两位两通换向阀与2个单向阀组成的复合阀,其内部油路如图2所示,针对两位三通阀的建模过程已有相关研究[7-10],不再赘述。
图2 两位三通比例换向阀内部油路图
参照两位三通阀的建模方法,基于压力-流量方程、孔道流量连续性方程及阀芯力平衡方程,考虑阀芯运动过程中泄漏和液体压缩量补偿情况,分别建立定差减压阀和单向阀的数学模型,并结合两位三通阀,建构比例提升阀的完整模型。电液提升比例换向阀的状态方程如式(1)~式(5)所示。
边界条件:
如果RCV<0,则RCV=0;如果RCV>RCVm则RCV=RCVm;
如果RCV=0,且RCV<0,则RCV=0;
如果RCV=RCVm,且RCV>0,则RCV=0;
如果RMV<0,则RMV=0;如果RMV>MVm,则RMV=MVm;
如果RPV
如果RMV=0,且RMV<0或RMV=MVm且RMV>0则RMV=0;
如果RPV=RMV,且RPV 如果RPV=PVm,且RPV>0则RPV=0; 如果RPV<0,则RPV=0;如果RPV>PVm,则PRV=PRVm; 如果RPV=0,且RPV<0,则RPV=0; 如果RPV=PRVm,且PRV>0则PRV=0; 其中 式(1)~式(5)中,e为油液的体积弹性模量,取e=900×106Pa;LS为两位两通换向阀与出油单向阀间油腔(包括压力传感油道)的油液容积,1.41´10–5m3;RCV为出油单向阀(锥阀式)阀座孔直径,0.014 5 m;RCV为出油单向阀阀芯位移量,m;S2为通过两位两通换向阀出油口的油液流量,m3/s;RCV为出油单向阀的阀芯半锥角,0.785 4 rad;L为比例提升控制阀主阀进口压力(即提升液压缸的工作压力),Pa;dO1为两位三通换向阀与定差减压阀间阻尼孔的流量系数,dO1≈0.82;O1为两位三通换向阀与定差减压阀间阻尼孔直径,0.000 8 m;S2为两位两通换向阀的出口油液压力,Pa;PRV1为定差减压阀低压控制油腔油液压力,Pa;PV0为比例提升控制阀先导阀前腔在先导阀关闭时的油液容积,3.13´10–6m3;PV为比例提升控制阀先导阀阀座直径,5.5´10–4m;RPV为两位三通换向阀先导阀阀芯提升量(等于阀芯位移量),m;MV1为比例提升控制阀主阀阀芯导向部分直径,0.019 m;dPV为比例提升控制阀先导阀节流口流量系数,对于无倒角的圆锥阀口,dPV≈0.76;PV为比例提升控制阀先导阀阀芯半锥角,0.5404 rad;RPV为两位三通换向阀先导阀前腔油液压力,Pa;PRV为定差减压阀阀芯直径,0.017 5 m;PRV为定差减压阀阀芯位移量(出油节流口关闭方向为正方向),m;PRV1为定差减压阀低压控制油腔油液压力,Pa;dO0为定差减压阀低压控制油腔旁通阻尼孔的流量系数,dO0≈0.82;O0为定差减压阀低压控制油腔旁通阻尼孔直径,0.000 2 m;为油液密度,=900 kg/m3;S1为定差减压阀出油口至两位三通换向阀进油口之间油腔的初始油液容积,m3。MV1为比例提升控制阀主阀阀芯导向部分直径,0.019 m;MV为比例提升控制阀主阀阀孔直径,0.015 m;RMV为两位三通比例换向阀主阀阀芯位移量,m;dPRV为定差减压阀出油节流口流量系数,dPRV=0.65;PRV为定差减压阀圆孔式节流孔数目,6;为定差减压阀节流圆孔直径,0.006 2 m;PRV为定差减压阀节流口初始开口量,0.005 m;dMV,主阀节流口流量系数,dMV=0.65;MV为比例提升控制阀主阀小矩形开口时的阀口面积梯度,0.010 9 m;MV0为比例提升控制阀主阀开口重叠量(即不灵敏区),m;MV1为比例提升控制阀主阀小矩形开口时的最大开口量,m;MV1为比例提升控制阀主阀阀芯导向部分直径,m;PV为比例提升控制阀先导阀阀芯及其连接件的总质量,0.031 kg;RPVD为两位三通比例换向阀电磁铁对先导阀阀芯的电磁力,N;MPV0为比例提升控制阀先导阀阀芯相对主阀阀芯运动的粘性阻尼系数,N·s/m;PV2为比例提升控制阀先导阀阀芯的导向长度,0.006 4 m;PV为比例提升控制阀电磁铁铁芯运动的粘性阻尼系数,N·s/m;PV为比例提升控制阀先导阀弹簧刚度,8 742 N/m;PV0为比例提升控制阀先导阀弹簧预压缩量,0.000 4 m;vPV为比例提升控制阀先导阀节流口的流速系数,vPV≈0.980。fRMV,RMVs,fRCV,s2,fPRV如式(6)~(10)所示。 式(6)~(10)中,MV为比例提升控制阀主阀阀芯运动粘性阻尼系数,N·s/m;:vMV为比例提升控制阀主阀节流口的流速系数,vMV≈0.980;dRCV为两位三通比例换向阀出油单向阀节流口流量系数,dPV0=0.76;RCV为两位三通比例换向阀出油单向阀阀芯和弹簧等效质量,0.022 5 kg;RCV为两位三通比例换向阀中出油单向阀阀芯运动的粘性阻尼系数,N·s/m;RCV为两位三通比例换向阀中出油单向阀弹簧刚度,N/m;RCV为两位三通比例换向阀中出油单向阀阀芯位移量(向下运动为正方向),m。RCV0为两位三通比例换向阀中出油单向阀弹簧预压缩量,m;vRCV为两位三通比例换向阀中出油单向阀节流口的流速系数,vRCV≈0.98。RCV为两位三通比例换向阀出油单向阀(锥阀式)阀座孔直径,0.014 5 m;RPV0为两位三通比例换向阀先导阀进油道阻尼孔流量,m3/s;LMV为比例提升控制阀主阀阀芯位移量,m;RMV为两位三通比例换向阀主阀节流口流量,m3/s。PV0为比例提升控制阀先导阀进油道阻尼孔直径,3.5´10–4m;PRV为定差减压阀阀芯及其组件的等效质量,0.181 kg;PRV2为定差减压阀高压控制油腔油液压力,Pa;PRV1为定差减压阀低压控制油腔油液压力,Pa。PRV为定差减压阀弹簧刚度,13 591 N/m;PRV为定差减压阀阀芯及其组件的等效质量,kg;PRV0为定差减压阀弹簧预压缩量,0.017 7 m;PRV为定差减压阀阀芯运动的粘性阻尼系数,N·s/m;PRV为定差减压阀阀芯及其组件的等效质量,0.181 kg;PRV为定差减压阀阀芯的密封长度,0.016 5 m;PRV为定差减压阀阀芯及其组件的等效质量,0.181 kg。 为了分析比例提升阀的稳态工作特性以及随阀芯位移和负载压力阶跃变化时的动态响应特性,应用MATLAB的Function自定义函数模块针对每一个状态量的微分方程进行模块化处理,并根据各个状态量之间的相互作用关系建立比例提升阀仿真模型,如图3所示,模型参数取值与试验系统一致,模型求解采用四阶龙格-库塔算法。 图3 比例提升阀仿真模型 比例提升控制阀的稳态流量特性曲线如图4所示,其死区电压约为0.9 V,分析其原因:死区电压与比例提升阀中先导阀弹簧预紧力、电磁线圈产生的反电动势及主阀芯节流口不灵敏区等因素有关。在驱动电压3.9 V附近,受定差减压阀压力调节的影响,比例提升阀输出流量出现微小波动。当驱动电压达到5.5 V时,最大流量约为62 L/min,与两位三通比例换向阀产品性能接近。 图4 比例提升阀稳态流量特性曲线 1)比例提升阀驱动电压不变,负载压力阶跃变化时的流量响应特性 给定比例提升阀驱动电压4.7 V,供油压力20 MPa,仿真时间6 s,得到比例提升阀在负载压力由5~10 MPa阶跃变化时的流量响应特性曲线如图5a所示。由图5a可知,比例提升阀系统流量在定差减压阀没有及时调压前迅速增加,经过定差减压阀压力补偿后,系统流量稳定在30 L/min左右,调整时间约为0.3 s,当负载压力在2 s处阶跃变化时,系统流量经迅速波动后稳定在30 L/min左右,调整时间小于0.1 s。由此可得,所设计的比例提升阀具有压力补偿功能,系统稳态流量不受负载波动的影响,仅与驱动电压有关。 2)比例提升阀负载压力不变,驱动电压阶跃变化时的流量响应特性 给定比例提升阀负载压力5 MPa,供油压力10 MPa,仿真时间6 s,得到比例提升阀在驱动电压由4.3~4.7 V阶跃变化时的流量响应特性曲线如图5b所示。由图5b可知,比例提升阀系统流量在定差减压阀没有及时调压前迅速增加,经过定差减压阀压力补偿后,系统流量稳定在15 L/min左右,调整时间约为0.25 s,当驱动电压在2 s处阶跃变化时,系统流量按线性规律平稳增加到 28 L/min左右,调整时间约为0.2 s。由此可知,比例提升阀在负载压力不变的情况下,可通过改变驱动电压实现良好的动态调速功能。 图5 比例提升阀流量响应特性仿真结果 为了验证比例提升阀数学模型和仿真分析的正确性,搭建了闭心式负载敏感液压系统室内试验平台。平台负载提升液压回路主要由负载敏感变量泵、节流阀、定差减压阀、两位三通比例换向阀和比例溢流阀串联组成,比例提升阀试验方案原理及试验现场如图6所示。比例溢流阀用于模拟负载压力;安全溢流阀用于液压系统过载保护,设定开启压力为20 MPa。其中,比例溢流阀开启压力和比例提升阀阀芯开度可分别通过电液比例控制器和比例阀控制放大器进行实时控制。 压力传感器采用德国米科MIK-P300型压力传感器,测压范围为0~30 MPa,24 V电源供电,输出信号为4~20 mA电流信号,整体响应时间为20 ms。智能变送仪用于接收压力传感器输出的4~20 mA电流信号,实时显示油压数值,并可变送输出1~5 V电压信号。流量传感器采用TLW- 15G型涡轮流量传感器,压力范围0~25 MPa,量程为0~100 L/min,24 V电源供电,输出信号为4~20 mA电流信号,可外接250W电阻转换为1~5 V电压输出。压力和流量传感器信号可通过NI采集卡实时传输到PC机中,并通过LabVIEW程序界面实时显示传感器输出信号变化曲线。比例阀控制放大器用于控制海德福斯插装式比例阀,采用9~32 V电源供电,输入电压范围为2.5~5 V,输出比例线圈驱动电流范围为0~1.2 A,最大输出电流为2 A。 比例溢流阀选用华德液压生产的DBEM2-30B/ 315YM型锥阀式先导比例溢流阀,通径为25 mm,允许通过的最大流量为600 L/min,可提供的最大开启压力为31.5 MPa。可根据VT-2000BS40G型电液比例控制器输出的电流信号无级调节比例溢流阀的开启压力,采用24 V电源供电,其控制电压为0~9 V,输出先导电流为100 mA,最大电流为800 mA。 4.2.1 稳态流量特性 由于比例提升阀液压系统回路流量只与两位三通比例换向阀主阀芯开度有关,调节比例溢流阀开启压力,将负载压力维持在8~10 MPa之间,改变比例阀控制放大器输入电压,得到比例提升阀在阀芯开度由大变小再由小变大过程中的系统稳态流量特性曲线,如图7所示。 1. 负载敏感变量泵 2,5,7. 油压传感器 3. 节流阀 4. 定差减压阀 6. 两位三通比例换向阀8. 安全溢流阀 9. 比例溢流阀10. 流量传感器 11. 负载反馈单向阀 1. Load sensitive variable pump 2, 5, 7. Oil pressure sensor 3. Throttle valve 4. Differential pressure reduction valve 6. 2 position-3 way proportional directional valve 8. Safety relief valve 9. Proportional relief valve 10. Flow sensor 11. Load feedback one-way valve 图6 比例提升阀流量响应特性试验平台 图7 比例提升阀负载压力8~10 MPa时的稳态流量曲线 由图7可知,比例提升阀随输入电压变化的稳态流量受主阀芯节流口几何结构的影响,先后经历了死区、流量缓慢增加和流量快速增加3个阶段。当输入电压达到5 V时,比例提升阀最大流量达到60 L/min左右,稳态流量回程误差不到5%。同时,该阀试验数据与稳态流量仿真数据吻合度较好,最大流量误差约为3.33%,满足电液提升器在提升悬挂农具过程中对比例提升阀输出流量的要求。 4.2.2 动态特性 比例提升阀输入电压为4.7 V,由电液比例控制器控制比例溢流阀开启压力产生从5 到10 MPa的阶跃变化,得到比例提升阀负载压力、定差减压阀出口压力及系统流量的动态响应特性曲线如图8所示。 图8 比例提升阀流量响应特性试验结果 由图8a可知,负载压力发生5~10 MPa的阶跃变化时,定差减压阀出口压力由6.5 MPa阶跃变化到11.5 MPa,建压时间约为0.5 s,平均补偿压力约为1.5 MPa,系统流量在负载压力阶跃变化时维持在30 L/min左右,与仿真数据基本一致。由此可知,比例提升阀具有良好的负载压力补偿及稳态调速特性,满足电液提升器在提升农具过程中实际工况要求。 当电液比例控制器控制比例溢流阀开启压力为 5 MPa,比例提升控制阀输入电压在4.3~4.7 V之间以30 s为周期进行阶跃变化时,得到比例提升阀负载压力、定差减压阀出口压力以及系统流量的动态响应特性曲线如图8b所示。由图8b可知,在比例提升阀输入电压阶跃变化时,系统流量由15 L/min阶跃变化到27 L/min,与仿真数据基本吻合,系统流量误差为3.57%;受比例提升阀液压系统回油背压的影响,负载压力和定差减压阀出口压力几乎同步阶跃变化,阶跃变化量约为0.5 MPa,平均压力值分别为5.25和6.75 MPa。 1)针对重型拖拉机电液提升器田间作业环境和作业要求,设计了比例提升阀负载敏感液压系统回路,并基于板式阀设计理念,研制一套电液提升器插装式比例提升阀。 2)建立了基于边界条件的比例提升阀非线性数学模型,搭建MATLAB/Simulink模型,并对比例提升阀的动、静态性能进行仿真分析,仿真结果表明:在静态性能方面,两位三通换向阀进油压力稳定后始终高出负载压力一定值,约为1.5 MPa,系统稳态流量仅与驱动电压有关,最大流量约为62 L/min,比例提升阀具有良好的负载压力补偿和稳态调速特性;在动态性能方面,当负载压力阶跃变化时,比例提升阀系统输出流量波动小,调整时间短,受负载变化影响小,当驱动电压阶跃变化时,比例提升阀动态调速性能良好。 3)搭建闭心式负载敏感液压系统试验平台,试验结果表明:比例提升阀稳态流量输出先后经历死区、流量缓慢增加和流量快速增加3个阶段,最大流量达到60 L/min左右,回程误差不到5%。当负载压力阶跃变化时,比例提升阀补偿压力约为1.5 MPa,液压冲击小,系统流量输出平稳;当驱动电压阶跃变化时,比例提升阀动态调速特性良好,满足重型拖拉机电液提升器田间作业需求。 [1] 谢斌,武仲斌,毛恩荣. 农业拖拉机关键技术发展现状与展望[J]. 农业机械学报,2018,49(8):1-17. Xie Bin, Wu Zhongbin, Mao Enrong. Development and prospect of key technologies on agricultural tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 1-17. (in Chinese with English abstract) [2] 谭彧,谢斌,鄂卓茂. 拖拉机作业机组电液悬挂控制系统的研制[J]. 中国农业大学学报,2002,7(6):64-67. Tan Yu, Xie Bin, E Zhuomao. Study of hydraulic hitch system control ling technology for tractor working units[J]. Journal of Chinese Agricultural University, 2002, 7(6): 64-67. (in Chinese with English abstract) [3] 王川,孙坦. 大数据驱动下的农业信息科技创新与服务——中国农业科学院农业信息研究所“十三五”发展规划[J]. 数字图书馆论坛,2016(11):34-39. Wang Chuan, Sun Tan. The innovation and service of agricultural information technology driven by big data: development plan in 13th five-year of Agricultural Information Institute of Chinese Academy of Agricultural Sciences[J]. Digital Library Forum, 2016(11): 34-39. (in Chinese with English abstract) [4] Borodani P,Colombo D,Forestello M,et al. Robust control of a new electro-hydraulic pump for agricultural tractors[J]. IFAC Proceedings Volumes, 2011, 44(1): 2266-2271. [5] Zehsaz M,Sadeghi M H,Ettefagh M M,et al. Tractor cabin’s passive suspension parameters optimization via experimental and numerical methods[J]. Journal of Terramechanics, 2011, 48(6): 439-450. [6] 谭彧. 拖拉机液压悬挂和加载系统性能研究[D]. 北京:中国农业大学,2004. Tan Yu. The Study of Characteristics for Hydraulic Hitch & Loading System in Tractor[D]. Beijing: Chinese Agricultural University, 2004. (in Chinese with English abstract) [7] 明涛. 液压集成块现代设计方法研究[D]. 西安:西南交通大学,2015. Ming Tao. The Research of Modern Design Methods of Hydraulic Manifold Blocks[D]. Xi'an: Southwest Jiaotong University, 2015. (in Chinese with English abstract) [8] Kumar R, Raheman H. Design and development of a variable hitching system for improving stability of tractor trailer combination[J]. Engineering in Agriculture, Environment and Food, 2015, 8(3): 187-194. [9] 郝允志,薛荣生,陈建,等. 比例电磁阀开环-闭环复合控制算法[J]. 农业机械学报,2014,45(2):314-319. Hao Yunzhi, Xue Rongsheng, Chen Jian, et al. Open loop-closed loop compound control algorithm of proportional solenoid valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 314-319. (in Chinese with English abstract) [10] Du Qiaolian,Chen Xuhui. Design on control system for electro-hydraulic hitch equipment of tractor[J]. Advanced Materials Research, 2014, 945-949: 1513-1516. [11] 张弓,张树忠,吴文海,等. 超高速电液比例阀的设计与实验研究[J]. 机械科学与技术,2009,28(6):768-772. Zhang Gong, Zhang Shuzhong, Wu Wenhai, et al. Design and experimental investigation of an ultra-high-speed electro-hydraulic proportional valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(6): 768-772. (in Chinese with English abstract) [12] 李明生,朱忠祥,毛恩荣,等. 大功率拖拉机电液提升器比例提升阀设计[J]. 农业机械学报,2012,43(10):31-35. Li Mingsheng, Zhu Zhongxiang, Mao Enrong, et al. Design of proportional raise valve in electro-hydraulic lifting mechanism of big-power tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 31-35. (in Chinese with English abstract) [13] 李明生,宋正河,迟瑞娟,等. 大功率拖拉机电液提升器比例下降阀仿真与优化[J]. 农业机械学报,2012,43(增刊):1-5. Li Mingsheng, Song Zhenghe, Chi Ruijuan, et al. Simulation analysis on proportional lowering valve for high-power tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(S): 1-5. (in Chinese with English abstract) [14] 孔祥东,宋豫,艾超,等. 比例阀异形阀口流量特性PIV可视化实验研究[J]. 农业机械学报,2015,46(5):328-335. Kong Xiangdong, Song Yu, Ai Chao, et al. Visualization experiment of flow characteristics of special shaped valve port in proportional valve using PIV technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 328-335. (in Chinese with English abstract) [15] Enrico C, Wilber A B, Marco A, Marco B. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection[J]. ISA Transactions, 2014, 53(4) : 909-919. [16] 侯友山,石博强,谷捷. 负荷传感转向液压系统优先阀的稳健设计[J]. 农业工程学报,2010,26(10):129-133. Hou Youshan, Shi Boqiang, Gu Jie. Robust design of priority valve in load sensing hydraulic steering system[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(10): 129-133 (in Chinese with English abstract) [17] 杜恒,魏建华,冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. 浙江大学学报:工学版,2012,46(6):1034-1040. Du Heng, Wei Jianhua, Feng Ruilin. Modeling, simulation and experimental research on pressure tracking valve[J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 1034-1040, 1047(in Chinese with English abstract) [18] 袁士豪,殷晨波,刘世豪. 基于AMESim的平衡阀动态性能分析[J]. 农业机械学报,2013,44(8):273-280. Yuan Shihao, Yin Chenbo, Liu Shihao. Working propertiesof counterbalance valve based on AMESim code[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 273-280. (in Chinese with English abstract) [19] 荆宝德,殷涌光,范志红, 等. 装载机中数字电液比例控制系统的仿真[J]. 农业机械学报,2005,36(2):47-50. Jing Baode, Yin Yongguang, Fan Zhihong, et al. Simulation of digital electro-hydraulic proportional control system of workingdevice for loader[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(2): 47-50 (in Chinese with English abstract) [20] 孙衍石,靳宝全,熊晓燕. 电液伺服比阀控缸位置控制系统仿真研究[J]. 流体传动与控制,2009,4:32-35. Sun Yanshi, Jin Baoquan, Xiong Xiaoyan. Simulation of cylinder servo position system controlled by proportional[J]. Fluid Power Transmission and Control, 2009, 4: 32-35. (in Chinese with English abstract) [21] 夏胜枝,周明,李希浩,等. 高速强力电磁阀的动态响应特性[J]. 清华大学学报:自然科学版,2002,42(2): 258-261,277. Xia Shengzhi, Zhou Ming, Li Xihao, et al. Dynamic response characteristics of high-speed, powerful solenoid valve[J]. Journal of Tsinghua University: Science And Technology, 2002, 42(2): 258-261, 277. (in Chinese with English abstract) [22] 张廷羽,张国贤. 高速开关电磁阀的性能分析及优化研究[J]. 机床与液压,2006(9):139-142. Zhang Tingyu, Zhang Guoxian. Performance analysis and investigation to high speed digital valve[J]. Machine Tool & Hydraulics, 2006(9): 139-142. (in Chinese with English abstract) [23] 林义忠,曾德乐,冯喆. 基于 PWM 控制的高速开关电磁球阀动态特性仿真分析[J]. 机床与液压,2014,42(3): 152-154. Lin Yizhong, Zeng Dele, Feng Zhe. Simulation analysis of dynamic characteristics for high-speed switch electromagnetic ball valve based on PWM[J]. Machine Tool & Hydraulics, 2014, 42(3): 152-154. (in Chinese with English abstract) [24] 刘鹏,范立云,白云,等. 高速电磁阀电磁力近似模型的构建与分析[J]. 农业工程学报,2015,31(16):96-101. Liu Peng, Fan Liyun, Bai Yun, et al. Modeling and analysis of electromagnetic force approximate model of high-speed solenoid valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 96-101. (in Chinese with English abstract) [25] 王秋霞,樊丁,彭凯. AMSim仿真技术在高速电磁阀中的应用[J]. 航空动力学报,2014,3:702-707. Wang Qiuxia, Fan Ding, Peng Kai. High speed solenoid valve with the application of AMESim[J]. Journal of Aerospace Power, 2014, 3:702-707. (in Chinese with English abstract) [26] 蒋焕煜,张利君,周鸣川,等. 基于响应面法的电磁阀响应时间优化[J]. 农业工程学报,2016,32(9):67-73. Jiang Huanyu, Zhang Lijun, Zhou Mingchuan, et al. Optimization for response time of solenoid valve through response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 67-73. (in Chinese with English abstract) [27] 范立云,许德,费红姿,等. 高速电磁阀电磁力全工况关键参数相关性分析[J]. 农业工程学报,2015,31(6):89-96. Fan Liyun, Xu De, Fei Hongzi, et al. Key parameters’ correlation analysis on high-speed solenoid valve electromagnetic force under overall operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 89-96. (in Chinese with English abstract) [28] 黄家海,郭晓霞,李陶陶,等. 插装式电液比例流量放大阀特性分析[J]. 重庆大学学报,2016,39(4):8-15.Huang Jiahai, Guo Xiaoxia, Li Taotao, et al. Characteristics of electro-hydraulic proportional cartridge inserted valve based on flow amplifier[J]. Journal of Chongqing University, 2016, 39(4): 8-15. (in Chinese with English abstract) [29] Muller M T, Fales R C. Design and analysis of a two-stage poppet valve for flow control[J]. International Journal of Fluid Power, 2014, 9(1): 17-26. [30] 陈随英,赵建军,杜岳峰,等. 负载敏感变量泵结构建模与性能分析[J]. 农业工程学报,2017,33(3):40-49. Chen Suiying, Zhao Jianjun, Du Yuefeng, et al. Structural modeling and performance analysis of load-sensing variable pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3):40-49. (in Chinese with English abstract) [31] 赵建军. 重型拖拉机电液提升器比例控制阀设计与特性研究[D]. 北京:中国农业大学,2015. Zhao Jianjun. The Design and Characteristics Research of Proportional Control Valve for the Electro-hydraulic Hitch of Heavy Tractor[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract) Performance simulation and test of plug-in proportional raising valve of electro-hydraulic hitch for heavy tractor Hua Bo1, Zhao Jianjun2, Liu Changqing1, Du Yuefeng1, Mao Enrong1, Song Zhenghe1※ (1.,100083,;2.100101,) In order to reflect the essential characteristics of heavy tractor electro-hydraulic hitch proportional raising valves more accurately, the internal structure and working mechanism of each hydraulic component in the proportional raising valves are analyzed based on the field operation environment and operation requirements of heavy tractor electro-hydraulic hitches in this paper, a proportional raising valve load-sensitive hydraulic system circuit is designed, and an electro-hydraulic hitch cartridge proportional raising valve based on the plate valve design concept is developed. Besides, a nonlinear mathematical simulation model of proportional raising valves based on boundary conditions is established based on the state space method of modern control theory. The simulation model is built with MATLAB/Simulink. The dynamic and static performances are simulated and analyzed using the fourth-order Runge-Kutta algorithm, and the movement patterns of its internal spool is revealed. The simulation results showed that for static performance, the output flow of the proportional raising valve fluctuates briefly near the driving voltage of 3.9 V due to the influence of uniform-pressure-drop valve pressure regulation. As the pressure difference between the oil inlet and outlet of the two-position three-way proportional directional valve is basically maintained at about 1.5 MPa, the maximum flow rate is about 62 L/min under the action of uniform-pressure-drop valve, which is close to the product performance of the two-position three-way proportional directional valve, and the proportional raising valve has good load pressure compensation and steady-state speed regulation characteristics. In terms of dynamic performance, when the load pressure changes step by step, the output flow fluctuation of the proportional raising valve system is small, the adjustment time is short, and the influence of the load change is small. When the driving voltage changes step by step, the proportional raising valve has good dynamic speed regulation performance. Then, based on the indoor test platform of load-sensitive hydraulic system, the plug-in proportional raising valve of electro-hydraulic hitch is tested and studied. The test results show that the steady flow output of proportional raising valve has experienced 3 successive stages: dead zone, slow increase in flow and rapid increase in flow. Over the 3 stages, the maximum flow rate can reach about 60 L/min and return stroke error is less than 5%. At the same time, the test data of the valve is in good agreement with the steady flow simulation data, and the maximum flow error is about 3.33%. When the load pressure changes step by step, the proportional raising valve compensation pressure in real time is about 1.5MPa, the hydraulic shock is small, the static flow output of the proportional raising valve is stable, and the system flow is maintained at about 30 L/min when the load pressure changes step by step, which is basically consistent with the simulation data. When the driving voltage changes step by step, the flow rate of the system changes from 15 L/min to 27 L/min, which is basically consistent with the simulation data, and the flow rate error is only 3.57%, the proportional raising valve has good dynamic speed regulation and good steady-state speed regulation, meeting the field operation requirements of heavy tractor electro-hydraulic hitch. This study provides good reference for modeling, simulation and experimental analysis of key components of tractor hydraulic system. tractors; models; proportional raising valve; electro-hydraulic hitch; dynamic property 2019-01-02 2019-03-11 国家重点研发计划项目(2017YFD0700101) 华 博,博士生,主要从事液压控制和虚拟仿真研究。 Email:huabo@cau.edu.cn 宋正河,教授,博士,主要从事农机装备数字化设计与智能控制方面研究。Email:songzhenghe@cau.edu.cn 10.11975/j.issn.1002-6819.2019.08.013 S219.033 A 1002-6819(2019)-08-00109-09 华 博,赵建军,刘长卿,杜岳峰,毛恩荣,宋正河.重型拖拉机电液提升器插装式比例提升阀性能仿真与试验[J]. 农业工程学报,2019,35(8):109-117. doi:10.11975/j.issn.1002-6819.2019.08.013 http://www.tcsae.org Hua Bo, Zhao Jianjun, Liu Changqing, Du Yuefeng, Mao Enrong, Song Zhenghe.Performance simulation and test of plug-in proportional raising valve of electro-hydraulic hitch for heavy tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 109-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.013 http://www.tcsae.org3 电液提升器比例提升阀性能仿真
3.1 比例提升阀稳态特性仿真结果分析
3.2 比例提升阀动态特性仿真结果与分析
4 电液提升器比例提升阀性能试验
4.1 试验方案
4.2 试验结果与分析
5 结 论