朱 盈 徐 栋 胡 蕾 花 辰 陈志峰 张振振 周年兵 刘国栋 张洪程 魏海燕
江淮优良食味高产中熟常规粳稻品种的特征
朱 盈 徐 栋 胡 蕾 花 辰 陈志峰 张振振 周年兵 刘国栋 张洪程*魏海燕*
江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心, 扬州大学农学院, 江苏扬州 225009
从103个中熟常规粳稻品种(品系)中, 根据不同食味值和产量水平筛选出具有代表性的3种类型(味优高产、味优中产、味中高产), 系统比较各类型品质和产量, 以探究江淮优质食味与高产协同的品种特征。结果表明, 味优高产类型品种加工品质与味中高产类型品种无显著差异。与味中高产类型相比, 味优高产类型品种垩白粒率、垩白面积比、垩白度分别高82.06%、56.34%和93.28%, 蛋白质含量、直链淀粉含量分别低14.21%、39.78%, 胶稠度高8.73%, 消减值和回复值分别低282.11%、37.88%。在产量方面, 味优高产类型比味优中产类型高26.73%, 其高产原因主要是具有较高的每穗粒数和结实率。与味优中产类型相比, 味优高产类型单位面积穗数低22.26%, 每穗粒数与结实率分别高42.12%、6.18%, 成穗率高4.2%, 抽穗期与成熟期叶面积指数分别高5.47%、16.94%, 叶面积衰减率低7.25%, 抽穗至成熟期干物质积累量和积累比例分别高24.07%和15.50%, 着粒密度高40.33%。综上所述, 味优高产类中熟常规粳稻的特征是, 出糙率和整精米率都达国标1级; 透明度由3级至5级不等; 蛋白质含量在8%左右; 直链淀粉含量在10%左右; 胶稠度在75 mm以上; RVA谱消减值在−300 cP以下, 回复值在600 cP以下。在产量方面其单位面积穗数310万穗 hm–2左右, 每穗粒数140个左右, 抽穗后叶面积指数、干物质积累量与积累比例都能维持较高水平。
优良食味; 高产; 中熟常规粳稻; 品种特征
中国是世界上粳稻种植面积最大、总产最高的国家[1]。由于育种水平不断提高, 粳稻高产品种不断推陈出新, 品种类型日趋丰富。随着经济的发展和生活水平的提高, 在居民消费结构不断升级的背景下, 稻谷供给侧结构矛盾日益突出, 人们饮食结构发生变化, 对主食稻米的需求正由数量型向品质型、食味型转变[2–3], 稻米品质成为影响市场竞争力的决定因素[4]。一般品质和口感差的稻米在市场上缺乏竞争力, 而那些优质稻米如东北的“五常米”、云南的“遮放米”、江苏的“南粳系列软米”深受消费者青睐。长江中下游地区作为全国粳稻优势区之一, 特别是江淮地区, 粳稻单产能够保持较高水平[5], 其中, 由扬州大学、兴化市农业技术推广中心共同实施的国家粮食丰产科技工程项目——超高产栽培攻关方, 更是连年创造了稻麦两熟条件下水稻单产的全国纪录[6]。近年来, 江苏省粳稻育种的目标已从高产、优质、多抗转向优质、高产、多抗[7]。然而优质高产协同, 一直是水稻研究的难点, 前人研究发现产量与品质之间存在着复杂性, 陈波等[8]研究发现在双季稻地区产量较高的品种品质则相对较差, 万向元等[9]则表明水稻产量和品质性状存在一定程度的相关性, 通过优化产量构成因子的结构, 选择合适的品质性状相关基因可以实现优质与高产的重组, 从而培育优质、高产水稻新品种。近年来, 江淮地区培育和引种了一批高产中熟新品种, 在生产中表现出较高的产量潜力, 但对这些品种产量表现、品质特点研究还不多, 尚不清楚这些品种高产与优质是否存在协同性, 具有哪些特征。针对上述问题, 本文以江淮之间现有主推品种和近年来育种单位育出的有潜力的103个中熟常规粳稻品种(系)为材料, 用米饭食味计测得各品种食味值, 根据其食味值与产量的差异, 筛选出味优高产、味优中产和味中高产3种类型, 又从每种类型筛选出生产上最具代表性的3个品种(系), 系统比较3种类型常规粳稻各品质指标与产量及其构成因素间的差异, 深入分析差异形成原因, 阐明其品种特征, 旨在为江淮地区中熟常规水稻栽培新品种的选育及高产、优质的稻作生产提供技术支撑。
扬州大学农学院试验农场试验地前茬为小麦, 土质为沙壤土, 含全氮0.13%、碱解氮87.3 mg kg–1、速效磷32.5 mg kg–1、速效钾88.5 mg kg–1。
选用103个中熟类型常规粳稻品种(系), 根据食味值与产量(表1)筛选出生产上最具有代表性的味优高产类(食味值在60分以上且产量在9.5 t hm–2左右)徐稻9号、扬粳239、南粳9108; 味优中产类(食味值在60分以上且产量在7.5 t hm–2左右)苏香粳3号、沪早香软1号、松早香1号; 味中高产类(食味值在50分以下且产量在9.5 t hm–2左右)华粳5号、圣稻22、泗稻15, 共9个品种, 研究产量与品质的差异。
2016年至2017年应用精确定量栽培原理设计, 5月29日播种, 6月12日移栽, 行株距为30 cm×12 cm, 每穴4株苗。小区面积为25 m2, 重复3次, 小区间作埂隔离, 并用塑料薄膜覆盖埂体, 保证单独排灌, 氮肥施用量为270 kg hm–2, 氮肥按基蘖肥∶穗肥 = 7∶3施用。基肥∶分蘖肥∶穗肥 = 3.5∶3.5∶3.0。分蘖肥于移栽后7 d施用, 穗肥于倒四叶期施用。氮(纯N)∶磷(P5O2)∶钾(K2O)比例为2∶1∶2, 磷肥一次性基施, 钾肥分别于耕翻前、拔节期等量施入。水分管理及病虫草害防治等相关的栽培措施均按照高产栽培要求实施。
1.3.1 食味值指标 采用米饭食味计(STA/A, 日本佐竹公司)测定米饭的外观、硬度、黏度、平衡值的评分和综合评分值。
1.3.2 产量及其构成因素 成熟期调查每小区100穴, 计算有效穗数, 取10穴调查每穗粒数、结实率和测定千粒重, 测理论产量, 成熟后实收测产。
1.3.3 稻米品质 水稻收获、脱粒、晒干并室内贮藏3个月后, 用NP-4350型风选机等风量风选, 参照中华人民共和国国家标准《GB/T17891-1999优质稻谷》测定糙米率、精米率、整精米率、直链淀粉含量、蛋白质含量、胶稠度。采用万深SC-E大米外观品质检测及稻米品质判定仪测定长宽比、精米长和宽、透明度、垩白粒率、垩白面积比、垩白度。采用澳大利亚Newport Scientific仪器公司生产的Super3型RVA快速黏度分析仪测定淀粉谱黏滞特性, 用配套软件TWC分析。按照AACC规程(1995-61-02)和RACI 标准方法, 取含水量为14.00%的米粉3.00 g, 加蒸馏水25.00 g。在搅拌测定过程中, 罐内温度为50℃, 保持1 min后以11.84℃ min–1的速度上升到95℃ (3.75 min)并保持2.5 min, 再以11.84℃ min–1的速度下降到50℃并保持1.4 min。搅拌器在起始10 s内转动速度为960转 min–1, 之后保持在160转 min–1。RVA谱特征值包括峰值黏度、热浆黏度、最终黏度、崩解值(峰值黏度-热浆黏度)、消减值(最终黏度-峰值黏度)、回复值(最终黏度-热浆黏度)等。
1.3.4 茎蘖动态 每个小区连续选定10穴作为一个观察点, 分别在拔节期、抽穗期和成熟期观察茎蘖消长动态。
1.3.5 叶面积 在移栽期、拔节期、抽穗期和成熟期, 按每小区茎蘖的平均数取具有代表性植株5穴, 采用美国LI-COR公司生产的叶面积仪(LI-3100)测定叶面积。
1.3.6 干物重 在移栽期、拔节期、抽穗期和成熟期按平均茎蘖数取代表性植株5穴, 于105℃杀青30 min, 70℃烘干至恒重, 测定各植株干物质积累情况。
叶面积衰减率(LAI d–1) = (LAI2–LAI1)/(t2–t1), 公式中LAI1和LAI2为前后2次测定的叶面积指数, t1和t2为前后2次测定的时间(天)。
本文分析了2016、2017两年所有品种的品质与产量, 试验的重复性较好, 品种间各指标值变化趋势一致, 主要以2017年数据进行分析。使用Microsoft Excel 2016处理数据和绘制图表, SPSS 16.0软件进行其他统计分析。
不同类型常规粳稻平均食味值为味优中产>味优高产>味中高产(表2), 味优高产类和味优中产类分别比味中高产类高37.89%、44.84%, 差异极显著。其中, 外观、黏度、平衡值均呈味优中产>味优高产>味中高产, 且味优高产类和味优中产类都极显著高于味中高产类; 硬度呈味中高产>味优高产>味优中产, 味中高产类极显著高于味优高产类和味优中产类。味优高产类和味优中产类在食味值、外观、硬度、黏度和平衡值方面均无显著性差异。
味优高产和味中高产类常规粳稻糙米率与整精米率分别比味优中产类高1.21%、0.95%与20.14%、18.01% (表3), 精米率无显著性差异。
粒形方面, 长宽比与长均值均无显著差异(表4),宽均值以味优高产类和味中高产类分别比味优中产类高13.08%、12.24%, 差异显著。透明度方面, 味优高产类与味优中产类分别比味中高产类大83.5%、66.5%。垩白方面, 味优高产类和味优中产类垩白粒率、垩白面积比、垩白度极显著高于味中高产类, 分别高82.06%、84.95%, 56.34%、64.96%和93.28%、94.20%。
表2 不同类型常规粳稻食味值的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. GTHY: good taste and high yield; GTMY: good taste and medium yield; MTHY: medium taste and high yield.
表3 不同类型常规粳稻加工品质的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
表4 不同类型常规粳稻外观品质的差异
Table 4 Differences of appearance quality among different types of conventionalrice
品种Cultivar长宽比Length-width ratio长Length(mm)宽Width(mm)透明度Transparency垩白粒率Chalkiness grain rate (%)垩白面积比Chalkiness area ratio (%)垩白度Chalkiness degree (%) 味优高产GTHY 徐稻9号 Xudao 91.884.792.55352.5457.0323.69 扬粳239 Yangjing 2391.664.712.78574.9374.0127.66 南粳9108 Nanjing 91081.644.552.71382.5979.9336.66 平均 Mean1.73 Aa4.69 Aa2.68 Aa3.67 Aa71.35 Aa68.32 Aa29.34 Aa
(续表4)
品种Cultivar长宽比Length-width ratio长Length(mm)宽Width(mm)透明度Transparency垩白粒率Chalkiness grain rate (%)垩白面积比Chalkiness area ratio (%)垩白度Chalkiness degree (%) 味优中产 GTMY 苏香粳3号 Suxiangjing 32.144.692.21371.4270.3128.15 沪早香软1号 Huzaoxiangruan 11.784.612.61475.5675.6433.92 松早香1号 Songzaoxiang 12.415.492.28370.4670.3226.38 平均Mean2.11 Aa4.89 Aa2.37 Ab3.33 Aa72.48 Aa72.09 Aa29.48 Aa 味中高产MTHY 华粳5号 Huajing 51.774.752.69243.3642.7318.38 圣稻22 Shengdao 221.754.582.63237.3135.5413.82 泗稻15 Sidao 151.824.822.66238.9137.8513.35 平均 Mean1.78 Aa4.71 Aa2.66 Aa2.00 Ab39.19 Bb43.70 Bb15.18 Ab
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
味中高产类蛋白质含量、直链淀粉含量最高, 胶稠度最短(表5)。味优高产类和味优中产类蛋白质含量、直链淀粉含量分别比味中高产类低14.21%、15.85%和39.78%、41.81%, 胶稠度分别比味中高产类长8.73%、9.38%, 差异极显著。
峰值黏度、热浆黏度、最终黏度及崩解值各类型品种间差异不显著(表6)。消减值与回复值以味优高产类和味优中产类极显著低于味中高产类, 其中, 消减值分别比味中高产类小282.11%、333.02%; 回复值分别比味中高产类小37.88%、39.35%; 味优高产类与味优中产类之间无显著性差异。峰值时间呈味中高产>味优高产>味优中产, 味中高产类比味优高产类和味优中产类分别高5.08%、10.71%, 味优高产类比味优中产类高5.36%, 差异显著。各类型糊化温度无显著差异。
表5 不同类型常规粳稻营养品质与蒸煮食味品质的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
不同类型常规粳稻平均产量表现为味中高产>味优高产>味优中产(表7), 但味中高产类与味优高产类无显著差异, 味优中产类平均产量比味优高产类和味中高产类分别低21.09%、22.23%, 差异极显著。产量构成因素方面, 单位面积穗数以味优中产类比味优高产类高28.64%, 比味中高产类高30.69%, 差异显著; 每穗粒数以味优中产类分别比味优高产类和味中高产类低29.64%、35.22%, 差异极显著; 结实率以味优高产类比味优中产类高6.18%, 比味中高产类高2.03%, 差异显著; 千粒重无显著差异。
表6 不同类型常规粳稻RVA谱特征值的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
表7 不同类型常规粳稻产量及其构成因素的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
拔节期平均茎蘖数以味优中产类比味优高产类和味中高产类分别高22.86%、20.87% (表8)。成穗率呈味中高产>味优高产>味优中产, 味中高产类平均成穗率分别比味优高产类和味优中产类高0.62%、4.85%, 味优高产类比味优中产类高4.21%, 差异显著。拔节期叶面积指数3种类型无显著差异; 抽穗期和成熟期呈味中高产>味优高产>味优中产, 差异显著或极显著; 抽穗期叶面积指数以味中高产类比味优高产类和味优中产类分别大1.01%、6.53%, 味优高产类比味优中产类大5.47%; 成熟期以味中高产类比味优高产类和味优中产类分别大10.28%、28.96%, 味优高产类比味优中产类大16.94%。平均叶面积衰减率以味优中产类显著高于味优高产类和味中高产类, 分别高达7.82%、8.20%。
移栽到拔节期和拔节到抽穗期干物质积累量各类型常规粳稻无显著差异(表9), 积累比例以味优中产类显著高于味优高产类和味中高产类, 分别高13.10%、16.68%和6.84%、6.13%。抽穗至成熟期干物质积累量与比例均呈味优中产<味优高产<味中高产, 其中干物质积累量以味优中产类分别比味优高产类和味中高产类低19.40%、22.64%, 味优高产类比味中高产类低4.01%; 积累比例以味优中产类分别比味优高产类和味中高产类低13.42%、14.19%, 差异显著或极显著。
穗长、一次枝梗数及二次枝梗数呈味中高产>味优高产>味优中产的趋势(表10), 但无显著差异。着粒密度以味优中产类极显著低于味优高产类和味中高产类, 分别比味优高产类和味中高产类低40.33%、49.34%, 味优高产类与味中高产类无显著差异。
表8 不同类型常规粳稻茎蘖数、成穗率、叶面积指数及叶面积衰减率的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
表9 不同类型常规粳稻干物质积累量及比例的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
表10 不同类型常规粳稻穗部性状的差异
同一品种同列数据后不同小、大写字母分别表示处理间差异达5%和1%显著水平。缩写同表2。
Values for a cultivar within a column followed by different lowercase and capital letters are significantly different at the 5% and 1% probability levels, respectively. Abbreviations are the same as those given in Table 2.
继高产或超高产育种, 优质育种是近年来新兴发展的又一育种方向[10]。徐正进等[11]研究表明, 每穗粒数及其密切相关的着粒密度等指标对食味有负面影响, 与产量正相关的性状基本都与食味值负相关, 在一定程度上说明高产与食味统一的复杂性。加工与外观品质是稻米商品价值的重要决定因素[12], 是人们选择和购买稻米时主要关注的性状[13-14], 消费者比较青睐透明度好, 垩白少的稻米品种[15]。孟庆虹等[16–17]认为, 蛋白质含量控制在6.5%~7.5%, 直链淀粉含量控制在15.0%~16.5%可提高稻米的食味。本研究结果显示, 优良食味水稻在加工品质方面出糙率和整精米率都达国标1级, 在外观品质方面透明度由3级至5级不等; 垩白较大, 其中垩白粒率、垩白面积比在50%以上, 垩白度在20%以上; 同时其蛋白质含量和直链淀粉含量较低, 并未达到我国优质稻米质量指标, 平均蛋白质含量在8%左右, 平均直链淀粉含量在10%左右, 属于“双低类型”[18]水稻品种。稻米垩白主要是胚乳中区域性的淀粉粒排列松散导致的一些空腔造成的一种光学特性[19]。优良食味水稻品种较低的直链淀粉含量容易造成精米在存放一段时间后因水分较低或老化等原因出现暗胚乳(或云雾状)表型[20-21], 致使精米透明度较差, 这导致仪器或人眼外观检测时将其误判为垩白, 事实上对这种暗胚乳的不透明性状形成的淀粉结构并不清楚, 但可以明确它不同于稻米的垩白[22]。有研究发现蛋白质及直链淀粉含量与蒸煮稻米的食味品质均呈负相关, 过高的蛋白质含量对稻米的外观和食味品质有不良影响[23], 而胶稠度越长, 消减值与恢复值越小, 米饭柔软性、黏散性及综合评分越高, 口感越好[24-25]。江淮地区人们喜食口感偏软的稻米, 本试验筛选出优良食味与高产协同的中熟常规粳稻在食味值综合评价方面具有外观好、硬度小、黏度大、平衡值高, 胶稠度在75 mm以上, RVA谱消减值在−300 cP以下, 恢复值在600 cP以下等特点, 比较适合江淮地区人们的口感, 这也从一定程度上验证了对稻米的口味爱好因人而异的观点[26-27]。
一般认为, 足量群体穗数和较大的穗型及较高的结实率和千粒重是粳稻获得高产的关键[28]。但穗数过多会影响群体受光条件, 进而影响中后期干物质生产, 不利于高产的形成[29-30]; 而大穗型水稻存在籽粒异步灌浆现象, 弱势粒灌浆结实差严重限制了高产潜力的发挥与优良品质的形成[31]。于洪兰等[32]研究东北地区不同穗型水稻产量与食味值之间关系认为, 单位面积穗数320~330万穗 hm–2, 每穗颖花数150~170个的品种更具高产优质的潜力。本研究立足于江淮地区不同食味水平中熟常规粳稻发现, 同一环境下不同品种间, 优良食味高产水稻品种单位面积穗数310万穗hm–2左右, 每穗粒数140左右, 在抽穗之前能保持适宜的干物质积累与叶面积指数, 抽穗后叶面积指数、干物质积累量与积累比例都能维持较高水平。味优中产类常规粳稻全生育期茎蘖数都显著高于味优高产类, 而成穗率极显著低于味优高产类。这可能是因为味优中产类型在生育前期干物质生产旺盛, 碳水化合物供应充足, 促进了前期分蘖的大量发生, 群体受光条件受到影响, 导致抽随后叶面积衰减率较高, 而中后期干物质生产也相对较少, 致使大量分蘖消亡, 成穗率下降[29], 最终产量较低。这与彭显龙等[30]的研究结果基本一致。味优高产类品种各时期都能保证稳定且适宜的茎蘖数, 中后期较高的光合物质生产使得籽粒灌浆时糖源供应充足[33-34], 淀粉合成关键酶活性水平较高, 有利于籽粒淀粉合成[35-36], 水稻在高产的同时食味较优。
江淮地区优良食味高产中熟常规粳稻品种的加工品质出糙率和整精米率都达国标1级, 在外观品质方面透明度由3级至5级不等; 蛋白质含量在8%左右; 直链淀粉含量在10%左右; 胶稠度在75 mm以上; RVA谱消减值在−300 cP以下, 回复值在600 cP以下; 食味综合评价较高, 具体表现为外观好、硬度小、黏度大、平衡值高。单位面积穗数310万穗hm–2左右, 每穗粒数140个左右, 抽穗后叶面积指数、干物质积累量与积累比例都能维持较高水平。
[1] 陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势. 沈阳农业大学学报, 2006, 37: 801–805. Chen W F, Pan W B, Xu Z J. Current situation and trends in production ofrice in China., 2006, 37: 801–805 (in Chinese with English abstract).
[2] Lee J W, Hong K. Economic growth in Asia: determinants and prospects., 2012, 24: 101–113.
[3] 崔晶, 楠谷彰人, 松江勇次, 森田茂纪. 中日合作水稻品质·食味研究的现状和展望. 北方水稻, 2011, 41(4): 1–6. Cui J, Akihito K, Yuji M, Shigenori M. Present situation and expectation of the rice quality and eating under Sino-Japanese cooperation., 2011, 41(4): 1–6 (in Chinese with English abstract).
[4] 贾东, 周宇飞, 赵建明. 水稻品质改良的研究发展现状. 北方水稻, 2009, 39(6): 75–77. Jia D, Zhou Y F, Zhao J M. Current research status on quality improving in rice., 2009, 39(6): 75–77 (in Chinese with English abstract).
[5] 中华人民共和国农业部. 《全国优势农产品区域布局规划(2008–2015年)》. http://www.china.com.cn/policy/txt/2008-09/ 12/content_16441571.htm [2019-01-11]. Ministry of Agriculture of the People’s Republic of China. Regional Planning of Dominant Crops Production in China (2008– 2015): http://www.china.com.cn/policy/txt/2008-09/12/content_ 16441571.htm [2019-01-11].
[6] 郭保卫, 朱聪聪, 朱大伟, 张洪程, 江峰, 葛梦婕. 钵苗机插密度对不同类型水稻齐穗期株型及冠层微环境的影响. 生态学杂志, 2015, 34(1): 9–17. Guo B W, Zhu C C, Zhu D W, Zhang H C, Jiang F, Ge M J. Effects of planting density on plant form and micrometeorology in different types of rice with potted seedlings mechanical- transplanting method., 2015, 34(1): 9–17 (in Chinese with English abstract).
[7] 王才林, 朱镇, 张亚东, 赵凌. 江苏省粳稻品质改良的成就、问题与对策. 江苏农业学报, 2008, 24: 199–203. Wang C L, Zhu Z, Zhang Y D, Zhao L. Achievement and consideration on improving of grain quality forrice in Jiangsu, China., 2008, 24: 199−203 (in Chinese with English abstract).
[8] 陈波, 李军, 花劲, 霍中洋, 张洪程, 程飞虎, 黄大山, 陈忠平, 陈恒, 郭保卫, 周年兵, 舒鹏. 双季晚稻不同类型品种产量与主要品质性状的差异. 作物学报, 2017, 43: 1216–1225. Chen B, Li J, Hua J, Huo Z Y, Zhang H C, Cheng F H, Huang D S, Chen Z P, Chen H, Guo B W, Zhou N B, Shu P. Differences of yield and major quality characters between four late double- harvest rice varieties., 2017, 43: 1216–1225 (in Chinese with English abstract).
[9] 万向元, 胡培松, 王海莲, 孔令娜, 毕京翠, 陈亮明, 张坚勇, 翟虎渠, 万建民. 水稻品种直链淀粉含量、糊化温度和蛋白质含量的稳定性分析. 中国农业科学, 2005, 38: 1–6. Wan X Y, Hu P S, Wang H L, Kong L N, Bi J C, Chen L M, Zhang J Y, Zhai H Q, Wan J M. Analysis on stability of AC, GT and PC in rice varieties (L.)., 2005, 38: 1–6 (in Chinese with English abstract).
[10] 王有伟, 苗燕妮, 江鹏, 谢桂珍, 张欣, 施利利, 丁得亮, 崔晶, 王松文. 水稻产量、蛋白质及食味特性的关联研究. 中国农学通报, 2017, 33(5): 1–5. Wang Y W, Miao Y N, Jiang P, Xie G Z, Zhang X, Shi L L, Ding D L, Cui J, Wang S W. Correlation studies on yield, protein and palatability of rice., 2017, 33(5): 1–5 (in Chinese with English abstract).
[11] 徐正进, 邵国军, 韩勇, 张学军, 全成哲, 潘国君, 陈温福. 东北三省水稻产量和品质及其与穗部性状关系的初步研究. 作物学报, 2006, 32: 1878–1883. Xu Z J, Shao G J, Han Y, Zhang X J, Quan C Z, Pan G J, Chen W F. A preliminary study on yield and quality of rice and their relationship with panicle characters in northeast region of China., 2006, 32: 1878–1883 (in Chinese with English abstract).
[12] 刘贺梅. 水稻加工品质与外观品质QTL分析. 中国农业科学院硕士学位论文, 北京, 2010. Liu H M. QTLs Analysis of Processing Quality and Appearance Quality of Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010.
[13] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the quest for quality., 2009, 1: 133–139.
[14] 张昌泉, 赵冬生, 李钱峰, 顾铭洪刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016, 49: 4267–4283. Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality., 2016, 49: 4267–4283 (in Chinese with English abstract).
[15] Sreenivasulu N, Butardo V M, Misra G, Cuevas R P, Anacleto R, Kishor P B K. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress., 2015, 66: 1737.
[16] 孟庆虹, 程爱华, 姚鑫淼, 张瑞英, 陈凯新, 李霞辉. 粳稻食味品质评价方法的研究. 北方水稻, 2008, 38(6): 24–28. Meng Q H, Cheng A H, Yao X M, Zhang R Y, Chen K X, Li X H. Study on palatability evaluation method ofrice., 2008, 38(6): 24–28 (in Chinese with English abstract).
[17] 徐铨, 唐亮, 徐凡, 福嶌阳, 黄瑞冬, 陈温福, 徐正进. 粳稻食味品质改良研究现状与展望. 作物学报, 2013, 39: 961–968. Xu Q, Tang L, Xu F, Fu D Y, Huang R D, Chen W F, Xu Z J. Research advances and prospects of eating quality improvement inrice (L.)., 2013, 39: 961–968 (in Chinese with English abstract).
[18] 李坤. 低直链淀粉含量、低蛋白质含量粳稻资源品质性状研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2016. Li K. Study ofRice Resources Quality Traits on Low Amylose Content and Low Protein Content. MS Thesis of Shenyang Agricultural University. Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[19] Zhang C, Chen S, Ren X, Lu Y, Liu D, Cai X. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity., 2017, 65: 2222.
[20] 吴殿星, 夏英武, 李旭晨. 水稻胚乳外观云雾性状形成基础及其快速识别条件分析. 中国水稻科学, 2001, 15: 192–196. Wu D X, Xia Y W, Li X C. Formation basis of rice mist endosperm appearance and its rapid identifying factors., 2001, 15: 192–196 (in Chinese with English abstract).
[21] Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B. A cleaved amplified polymorphic sequence marker to detect variation inlocus conditioning translucent endosperm in rice., 2009, 16: 106–110.
[22] 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018, 32: 189–199. Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency., 2018, 32: 189–199 (in Chinese with English abstract).
[23] 陈能, 罗玉坤, 谢黎虹, 朱智伟, 段彬伍, 章林平. 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报, 2006, 32: 1193–1196. Chen N, Luo Y K, Xie L H, Zhu Z W, Duan B W, Zhang L P. Protein content and its correlation with other quality parameters of rice in China.2006, 32: 1193–1196 (in Chinese with English abstract).
[24] 蔡一霞, 刘春香, 王维, 张洪熙, 张祖建, 杨静, 唐汉忠. 灌浆期表观直链淀粉含量相似品种稻米胶稠度和RVA谱的动态差异. 中国农业科学, 2011, 44: 2439–2445. Cai Y X, Liu C X, Wang W, Zhang H X, Zhang Z J, Yang J, Tang H Z. Dynamic differences of the RVA profile and gel consistency in two rice varieties with similar apparent amylose content during grain filling., 2011, 44: 2439–2445 (in Chinese with English abstract).
[25] 胡培松, 翟虎渠, 唐绍清, 万建民. 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004, 30: 519–524. Hu P S, Zhai H Q, Tang S Q, Wan J M. Rapid evaluation of rice cooking and palatability quality by RVA profile., 2004, 30: 519–524 (in Chinese with English abstract).
[26] Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A. Important sensory properties differentiating premium rice varieties., 2010, 3: 270–281.
[27] Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion J C, Daygon V D, Mumm R, Reinke R, Dipti S, Bassinello P Z. Diversity of global rice markets and the science required for consumer-targeted rice breeding., 2014, 9: e85106.
[28] 张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46: 686–704. Zhang H C, Zhang J, Gong J L, Chang Y, Li M, Gao H, Dai Q G, Huo Z Y, Xu K, Wei H Y. The productive advantages and formation mechanisms of “rice torice”., 2013, 46: 686–704 (in Chinese with English abstract).
[29] 钟旭华, 彭少兵, Sheehy J E, 刘鸿先. 水稻群体成穗率与干物质积累动态关系的模拟研究. 中国水稻科学, 2001, 15: 107–112. Zhong X H, Peng S B, Sheehy J E, Liu H X. Relationship between productive tiller percentage and biomass accumulation in rice (L.): a simulation approach., 2001, 15: 107–112 (in Chinese with English abstract).
[30] 彭显龙, 刘元英, 罗盛国, 范立春, 宋添星, 郭艳文. 实地氮肥管理对寒地水稻干物质积累和产量的影响. 中国农业科学, 2006, 39: 2286–2293. Peng X L, Liu Y Y, Luo S G, Fan L C, Song T X, Guo Y W. Effects of the site-specific nitrogen management on yield and dry matter accumulation of rice in cold areas of northeastern China., 2006, 39: 2286–2293 (in Chinese with English abstract).
[31] 杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36: 2011–2019. Yang J C. Mechanism and regulation in the filling of inferior spikelets of rice., 2010, 36: 2011–2019 (in Chinese with English abstract).
[32] 于洪兰, 王伯伦, 王术, 佟伟, 王一, 黄元财, 蒋文春. 不同类型水稻品种的产量与食味品质的关系比较. 作物杂志, 2009, (1): 46–49. Yu H L, Wang B L, Wang S, Tong W, Wang Y, Huang Y C, Jiang W C. Comparison of relationships between yield and eating quality in different types of rice varieties., 2009, (1): 46–49 (in Chinese with English abstract).
[33] 程方民, 钟连进, 孙宗修. 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响. 中国农业科学, 2003, 36: 492–501. Cheng F M, Zhong L J, Sun Z X. Effect of temperature at grain-filling stage on starch biosynthetic metabolism in developing rice grains of early-., 2003, 36: 492–501 (in Chinese with English abstract).
[34] Yang J C, Zhang J H. Grain-filling problem in ‘super’ rice., 2010, 61: 1–5.
[35] 沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽. 水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质的关系. 中国水稻科学, 2006, 20: 58–64. Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L. Relationship between activity of key starch synthetic enzymes during grain filling and quality of eating and cooking in rice., 2006, 20: 58–64 (in Chinese with English abstract).
[36] 赵步洪, 张文杰, 常二华, 王志琴, 杨建昌. 水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系. 中国农业科学, 2004, 37: 1123–1129. Zhao B H, Zhang W J, Chang E H, Wang Z Q, Yang J C. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling rate and cooking quality., 2004, 37: 1123–1129 (in Chinese with English abstract).
Characteristics of medium-maturity conventionalrice with good taste and high yield in Jianghuai area
ZHU Ying, XU Dong, HU Lei, HUA Chen, CHEN Zhi-Feng, ZHANG Zhen-Zhen, ZHOU Nian-Bing, LIU Guo-Dong, ZHANG Hong-Cheng*, and WEI Hai-Yan*
Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
A field experiment was conducted with 103 medium-maturity conventionalrice varieties (lines) including main varieties grown in Jianghuai area and released varieties in recent years with potential productivity, from which three types [good taste and high yield (GH), good taste and medium yield (GM), and medium taste and high yield (MH)] were selected to explore the characteristics of varieties with good taste and high yield in Jianghuai area. There was no significant difference in processing quality between GH type and MH type. Compared with MH type, GH type was 82.06%, 56.34%, and 93.28% higher in chalkiness rate, chalky area ratio and chalkiness, 14.21% and 39.78% lower in protein content and amylose content, 8.73% higher in gel consistency, and 282.11% and 37.88% lower in setback and consistence, respectively. The yield of GH type was 26.73% higher than that of GM type, due to large number of spikelets per panicle and high seed-setting rate. The panicles per unit land area was 22.26% lower, the number of spikelets per panicle and seed-setting rate were 42.12% and 6.18% higher, the ratio of productive tillers to total tillers was 4.2% higher in GH type than those in GM type. The LAI of GH type during heading and maturity periods was 5.47% and 16.94% higher and the decay rate of LAI was 7.25% lower than those of GM type. From heading to maturity, the dry matter accumulation and its ratio, the photosynthetic potential, the crop growth rate, the net assimilation rate and seed setting density were 24.07%, 15.50%, 17.59%, 13.96%, 3.67%, and 40.33% respectively higher in GH type than those in GM type. From above, GH type of medium-maturity conventionalrice has the following characteristics: the brown rice rate and the head milled rice rate reach the 1 grade of Chinese standard; the transparency is from grade 3 to grade 5; the protein content is around 8% and the amylose content is around 10%; the gel consistency is over 75 mm; the setback is below −300 cP and the consistence is below 600 cP; the number of panicles per unit land area is around 310×104ha–1, and the grains number per panicle is around 140. It can keep the dry matter accumulation and the leaf area index in optimum ranges before heading period, and remain the leaf area index, the dry matter accumulation and its ratios at high levels after heading period.
high quality; high yield; medium-maturity conventionalrice; breed characteristic
): 2018-07-14;
2018-12-24;
2019-01-16.
10.3724/SP.J.1006.2019.82040
张洪程, E-mail:hczhang@yzu.edu.cn; 魏海燕, E-mail: wei_haiyan@163.com
E-mail: 1004256927@qq.com
本研究由国家重点研发计划项目(2016YFD0300503), 江苏省重点研发计划项目(BE2016344,BE2018355), 国家现代农业产业技术体系(水稻)建设专项(CARS-01-27)和江苏高校优势学科建设工程项目资助。
This study was supported by the National Key Research and Development Programs (2016YFD0300503), the Key Research and Development Programs of Jiangsu Province (BE2016344, BE2018355), the Earmarked Fund for China Agriculture Research System (CARS-01-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
URL:http://kns.cnki.net/kcms/detail/11.1809.S.20190115.1125.002.html