高和群,曹海虹,曾 隽
(中国石化华东油气分公司勘探开发研究院,江苏扬州225007)
页岩含气量现场测试是在页岩气井现场将钻 井取上来的岩心立即装罐密封,在一定温度、常压下测量页岩自然释放的气量,即解吸气;损失气由早期解吸气量按照USBM法反推求得;页岩自然解吸终止后,开罐,然后称取一定量样品粉碎,并恢复到储层温度下测得的气体即为残余气。虽然无法在地层压力下进行,但常压下页岩含气量测试与气体从页岩层释放到井筒(可视为常压)中的过程类似,因此借助现场解吸资料研究页岩气解吸规律,对页岩气解吸机理、赋存方式确定、含气量测试方法优化及页岩气井排采均具有一定指导意义。
前期对岩心浸水实验气体释放特征、气体组分变化特征、解吸速率及页岩气赋存状态进行了研究,认为页岩气解吸是一个动态平衡过程,存在游离气向吸附气转化的拐点:拐点之前,解吸以游离气为主,气体大量解吸,解吸速率曲线变化较大;拐点之后以吸附气为主,进入稳定持久阶段。据此提出了基于现场解吸数据的游离气/吸附气计算方法,解决了现场解吸过程中页岩气赋存状态计算的问题[1]。笔者选用自主研发的新仪器——无压阻微压损型全自动含气量测试仪,对渝东南地区页岩气井含气量进行测试,通过页岩气组分连续检测,对海相页岩气解吸规律有了新认识。
全自动含气量测试仪由自动控温解吸罐、自动解吸仪及数据采集软件3部分组成(图1),该仪器不仅能测量页岩解吸气量,同时还能检测页岩气组分。不同于一般的体积流量计或质量流量计法,全自动含气量测量仪基本原理为校正式质量流量计法,对气体流量采用即时测得的气体组分、温度等数据,利用解吸气各组分(甲烷、氮气、二氧化碳等)相应气体摩尔质量进行校正,克服了气体组分因黏滞系数、膨胀因子不同所带来的影响。仪器测试间隔为10 s,将计算机程序置入仪器内,采用“三个一组,一对一解吸”方式设计,既能保证测试精度,又方便携带,还能满足一次解吸多个样品的需求。自动控温解吸罐为自主研发设计,具有自动加热控温功能,加热最高温度可达150℃,温控精度为±0.1℃,可以在高温下进行解吸,突破了常规水浴加热最高温度100℃的限制。
仪器核心部分为自动解吸仪,由干燥滤水设备、检测装置和数据采集装置三大模块组成。从自动控温解吸罐逸出的高温湿热气体,经干燥过滤去除粉尘和水后,依次通过红外甲烷浓度检测器、红外CO2浓度检测器及气体流量传感器后经气样采集端口排出,对排出后的气体还可以进行采集以做其他分析。检测的数据经信号转换模块输入到数据采集装置,在计算机和相关程序的支持下,对解吸气体自动采集气体温度、连续测得气体组分、气体流量、大气压力和环境温度各参数,自校正、自整理、自动计算总解吸气量及甲烷气量。全程为单向敞开式测量,解吸过程为无压阻设计,对解吸不产生压力抑制作用。
为了验证全自动含气量测试仪测试结果的准确性,分别选择渝东南地区页岩气井SY井与鄂尔多斯盆地东部煤层气井SSL井,与传统基于“U”型管原理的手动排水集气法(人工读数)解吸气量进行对比,根据2口井4个层位共10个岩心解吸样品的对比结果(表1)可知,绝对偏差为0.04~0.42 cm3/g,相对偏差为1.03%~7.89%,表明全自动含气量测试仪对页岩气/煤层气的现场解吸测试结果准确可靠。
图1 全自动含气量测试仪结构Fig.1 Structure of automatic apparatus for measuring gas content
表1 全自动含气量测试仪与人工读数结果对比Table1 Comparison of testing data from automatic apparatus and manual apparatus
解吸气量用来衡量页岩释放气量的多少,解吸速率用来表征页岩释放气体的快慢。渝东南地区五峰组—龙马溪组优质页岩平均解吸气量为0.85~2.43 cm3/g,解吸速率为0.07~0.24 cm3/(g·h)(表2)。一般来说页岩解吸气量越高、解吸速度越快,对应的页岩气井压力系数越高,其产量也就越高。SY井和JY井位于四川盆地内部,压力系数在1.50以上,属于超压页岩气井,优质页岩段具有较高的解吸气量和解吸速率,对应的日产气量较高;LY井、PY井和ZY井位于四川盆地边缘,压力系数为1.0左右,属于常压页岩气井,优质页岩段解吸气量和解吸速率相对较低,对应的日产气量也较低[2-6]。
表2 渝东南地区页岩气井产量与解吸气量、解吸速率的关系Table2 Relationship between shale gas production,desorbed gas content and desorption rate
页岩气井产量的高低不仅取决于解吸气量,还取决于解吸速度(包括解吸速率和解吸时间)。以ZY井为例,虽然页岩解吸气量为1.65 cm3/g,高于PY井、LY井,与JY井整体相当,但由于其解吸速率仅为0.07 cm3/(g·h),解吸时间长达153.33 h,在5口井中解吸速度最慢,压裂后测试日产气量仅为0.8×104m3/d。由于解吸气量代表着页岩容纳气体的多少,解吸速率反映了页岩释放气体的难易程度,页岩孔缝越发育、连通性越好,气体越容易释放,页岩气中游离气占比就越大[5,7-9],其对应的解吸速率高、解吸时间短;解吸气量较高、解吸速率大预示着页岩具有较高地层能量,页岩气井压裂后产量就越高。因此,评价某个地区页岩含气性的高低,不仅要关注解吸气量的高低,更要关注页岩气的解吸产出过程即解吸速率的大小、解吸时间的长短。
图2 渝东南地区SY井页岩气解析过程中甲烷质量分数的变化Fig.2 Variation of methane concentration with desorption time during shale gas desorption of Well SY in southeastern Chongqing
页岩气组分以甲烷为主,质量分数高达90%以上,除此之外还含有少量氮气、二氧化碳等非烃类气体,以及少量的重烃类气体,因此解吸过程中研究甲烷质量分数的变化规律对页岩气的解吸规律具有一定指示意义[8-10]。利用全自动含气量测试仪,首次对渝东南地区SY井和JY井进行现场解吸,并同时对气体组分进行即时连续检测。
页岩气解吸过程中,甲烷质量分数出现了“三段式”变化(图2,图3)。早期,开始解吸后2~3 h,甲烷质量分数快速升高,伴随页岩解吸气的快速释放,甲烷质量分数呈直线上升状态,达到最大值(92%左右),页岩孔缝越发育,连通性越好,页岩气解吸速度越快,甲烷质量分数达到最大值的时间越短;中期,开始解吸后3~10 h,此时甲烷质量分数基本稳定在最大值,页岩总解吸气量的高低取决于该阶段持续时间的长短,该阶段持续时间越长,页岩释放的气体就越多,对应的总解吸气量就越高;后期,10 h以上至解吸终止,甲烷质量分数呈现“跳跃式”持续下降,该阶段页岩气解吸逐渐结束。
与页岩气解吸规律不同,利用全自动含气量测试仪对鄂尔多斯盆地东部煤层气井的现场解吸结果表明,岩心装罐密封测量开始,甲烷质量分数升高达到最大值90%左右后,煤层气持续稳定解吸,持续时间在40 h以上,只是到后期,由于气量的减少,甲烷质量分数持续缓慢下降(图4);解吸气主要来自于煤层微孔隙中的吸附气。因此与以吸附气为主的煤层气相比,页岩气解吸后期甲烷质量分数“跳跃式”变化为其独有规律,其解吸规律的三段式变化模式反映了游离气和吸附气共存于页岩中,较高的游离气含量是页岩气井超压、高产的前提,吸附气是页岩气井稳产的重要保障[3,5,11-14]。
图3 渝东南地区JY井页岩气解析过程中甲烷质量分数的变化Fig.3 Variation of methane concentration with desorption time during shale gas desorption of Well JY in southeastern Chongqing
图4 鄂尔多斯盆地东部煤层气解析过程中甲烷质量分数的变化Fig.4 Variation of methane concentration during coal bed methane desorption in eastern Ordos Basin
甲烷质量分数“三段式”变化模式反映了页岩气独有的解吸规律。解吸初期,刚至地面的岩心常压下解吸,连通性较好的裂缝或大孔中易释放的气体首先逸出[15-17],伴随着页岩气的快速解吸,甲烷质量分数呈直线上升,这一过程在超压页岩气井中更为明显。中期为页岩气解吸主体阶段,甲烷质量分数达到最大值后基本稳定不变,页岩解吸进入稳定阶段,随着早期易于释放气体的逸散,页岩内气体逐渐向裂缝或大孔中运移,解吸逐渐向页岩内部进行,此时连通性一般的微裂缝或中、大孔中气体开始逸散[18-21]。甲烷质量分数“跳跃式”变化是解吸进入后期的标志,该阶段气体解吸殆尽,罐内渐处于“类真空”状态,随着扩散作用的继续,解吸向页岩更深处进行,此时气体多来自连通性较差的微、中孔,随着气体的扩散聚集,积累达到一定程度,气体突破束缚后突然释放,造成甲烷质量分数的急剧升高,而后续页岩基质的气体无法及时积聚到孔隙中,孔隙内短暂处于欠压状态,罐内出现所谓的“类真空”状态,外界气体通过自动解吸仪被反向压入孔隙内,页岩出现“倒吸”现象及甲烷质量分数的急剧降低。页岩解吸表现出间歇性释放导致的甲烷质量分数剧烈波动。
页岩气解吸过程中,气体赋存方式在不同解吸阶段具有不同的动态变化特征。以甲烷质量分数“三段式”变化模式为手段,并结合累积解吸气量,可以将页岩气解吸过程中气体赋存方式的动态变化划分为3个阶段(图5)。第1阶段,解吸早期2~3 h,甲烷质量分数快速升高,此时释放的气体以游离气为主,持续时间取决于页岩气井压力系数,压力系数越高、持续时间越长,产出的气量就越多;第2阶段,解吸中期3~10 h,甲烷质量分数基本稳定不变,游离气和吸附气共存,为页岩解吸气量的主要贡献阶段,此时游离气和吸附气大量释放,持续时间越长,对应的累积解吸气量越高、总含气量越大;第3阶段,解吸后期10 h以上,甲烷质量分数“跳跃式”变化,以吸附气或半开放孔的束缚气为主,页岩气解吸殆尽,解吸罐处于“类真空”状态,气体积累达到一定阶段摆脱束缚突然释放,该阶段释放的气量在解吸气中的占比较低。
综上所述,页岩气解吸是从外到内,从裂缝、大孔到微裂缝、微孔,最后到页岩基质块体,层层递进、逐级深入的过程。裂缝或大孔中易于流动的气体首先释放,此时气体多为游离气;微裂缝或中、大孔中流动性一般的气体随后释放,以游离气和吸附气为主;微孔中呈吸附或束缚状态的气体最后释放,且吸附气含量越高,这一阶段持续的时间越长,比如PY井、ZY井解吸时间均在50 h以上。
图5 页岩气累积解析气量与甲烷质量分数叠合Fig.5 Cumulative desorption gas overlapped with methane concentration of shale gas
利用自主研发的全自动含气量测试仪,对渝东南地区页岩气井进行现场含气量测试,通过甲烷质量分数、解吸曲线分析及煤层气井解吸特征对比,对页岩气解吸规律有了新的认识。页岩气井产量的高低不仅取决于含气量,还取决于解吸速度(解吸速率、解吸时间)。评价某地区页岩含气性的高低,不仅要关注含气量的高低,更要关注页岩气的解吸产出过程即解吸速率的大小、解吸时间的长短。
首次发现页岩气解吸后期甲烷质量分数“跳跃式”变化规律,并由此提出页岩气解吸遵循“三段式”变化模式。早期,解吸前2~3 h,页岩气迅速释放,甲烷质量分数呈直线上升,达到最大值;中期,甲烷质量分数达到最大值后,基本稳定不变,持续3~10 h,且持续时间越长,对应的含气量就越高;后期,解吸10 h以后,甲烷质量分数呈跳跃式下降,该阶段页岩气解吸逐渐结束。
页岩气解吸过程遵循其独有规律。解吸初期,连通性较好的裂缝或大孔中易于释放的气体首先逸出,此时多为游离态、被压缩的气体;中期为页岩气解吸主体阶段,随着早期易于释放气体的逸散,页岩内气体向裂缝或大孔中逐渐运移,解吸逐渐向内部进行,连通性一般的微裂缝或中、大孔中气体开始逸散,此时游离气、吸附气同时大量解吸;解吸后期,气体解吸殆尽,随着扩散作用的继续,解吸向页岩更深处进行,此时气体多来自连通性较差的微、半封闭孔,多呈吸附或束缚态被封闭其中,甲烷质量分数呈“跳跃式”变化。