张春池,彭文泉,高兵艳,于得明,杨长江
(1.山东省地质调查院,山东济南250013;2.山东省第一地质矿产勘查院,山东济南250014;3.中国石化胜利石油工程有限公司地质录井公司,山东东营257200)
美国、加拿大等多个国家已实现页岩气的规模 化开采[1-4],中国南方焦石坝地区志留系海相页岩气也实现了商业性开发[5],展示出页岩气良好的勘探开发前景和实用价值。山东省沉积的多套地层中发育富有机质泥页岩,自2013年以来,山东省地质调查院部署钻探的济阳坳陷济页参1井沙河街组、昌潍坳陷潍北凹陷昌页参1井孔二段、鲁西南盆地鱼页参1井和阳谷—茌平地区聊页参1井石炭系—二叠系泥页岩均见到良好的气测显示,表明研究区可能蕴含着巨大的天然气资源,是值得关注的新领域。张善文等认为济阳坳陷古近系泥页岩中存在可供开采的油气资源,具备形成页岩气的条件[6-7];张增奇等提出济阳坳陷区、临清坳陷区、胶莱坳陷区、黄县(龙口)凹陷以及鲁西南隆起区为山东省页岩气潜力区[8],但未确定页岩气勘探的有利层系,且对页岩气资源量未进行深入研究。为此,笔者应用地球化学、测井、录井等资料,根据各套富有机质泥页岩自身的特点,明确页岩气赋存的有利层系,优选资源评价方法,确定评价参数,估算山东省页岩气资源潜力,以期为下步页岩气目标区优选提供依据。
山东省暗色泥页岩在平面上主要分布于济阳坳陷、临清坳陷、昌潍坳陷、胶莱盆地、鲁西南含煤区、聊城—淄博含煤区、龙口盆地、泰莱凹陷、大汶口—蒙阴盆地、平邑—泗水盆地及枣滕含煤区共11个地区(图1),勘查面积约为81 500 km2。纵向上,暗色泥页岩主要发育于上古生界石炭系—二叠系太原组、山西组和石盒子组,中生界侏罗系—白垩系坊子组、瓦屋夼组、水南组、法家茔组,新生界古近系孔店组、大汶口组、李家崖组、沙河街组和东营组等多套层系[8]。
图1 山东省富有机质泥页岩分布范围Fig.1 Distribution of organic-rich shale in Shandong Province
研究结果表明[1,9-11],有机质含量和成熟度决定页岩的生烃能力,孔隙大小和吸附能力对页岩气的赋存起决定性作用,总有机碳含量(TOC)大于2.0%的富有机质泥页岩是页岩气形成的物质基础。根据2012年《全国页岩气资源潜力调查评价》中对海陆交互相和陆相沉积形成页岩气的评价参数[9],以层系中泥页岩厚度与地层厚度的比值高于60%、泥页岩厚度大于30 m、TOC大于2.0%、埋深为300~4 500 m、干酪根类型为Ⅰ—Ⅱ型的泥页岩镜质组反射率(Ro)不小于0.7%和干酪根类型为Ⅱ—Ⅲ型的泥页岩Ro不小于0.5%作为研究区有利含气泥页岩的评价标准,进而对比分析山东省不同地区、不同层系页岩气的有利勘探层系。
山东省上古生界富有机质泥页岩发育于石炭系太原组和二叠系山西组,主要为海陆交互相沉积,岩性主要为黑色泥页岩、砂岩和煤层,太原组夹部分灰岩[12-13]。受后期剥蚀改造,现今太原组和山西组保留较好且规模较大的有鲁西南地区、阳谷—茌平含煤区、黄河北含煤区、临清坳陷和济阳坳陷等地区;其沉积连续、厚度稳定,埋深为300~8 000 m;TOC一般为1.5%~9.0%,镜下鉴定结果显示干酪根类型以Ⅱ—Ⅲ型为主,Ro为0.7%~2.5%,且局部受岩浆岩烘烤或埋深较大层系的Ro大于4.0%(表1)。在埋深适中、热演化程度较高(0.5%<Ro<2.5%)、TOC较高的阳谷—茌平、鲁西南、黄河北及临清坳陷部分地区具有较好的页岩气资源勘查潜力。本溪组和石盒子组暗色泥页岩的TOC相对较低,且分布不均、厚度变化大,泥页岩厚度与地层厚度的比值一般小于50%,页岩气形成条件差。
山东省中生界富有机质泥页岩发育于白垩系水南组,为陆相浅湖-深湖相沉积[14-15],主要分布于胶莱盆地莱阳凹陷(表1),埋藏较浅,沉积厚度稳定,但分布面积相对较小,干酪根类型以Ⅰ和Ⅱ型为主,TOC最高为5.5%,Ro为0.54%~1.46%,页岩气勘查开发潜力有限。侏罗系坊子组、白垩系瓦屋夼组和法家茔组暗色泥页岩的分布范围较小,单层厚度薄,不具备页岩气勘查开发潜力。
新生界多套层系发育富有机质泥页岩,主要为陆相浅湖-深湖相沉积,其中页岩气有利赋存层系为古近系孔店组和沙河街组,但二者具有较大差异(表1)。孔店组富有机质泥页岩主要分布于昌潍坳陷,孔二段以暗色泥页岩为主[16-17],夹粉砂岩、砂岩、煤层和油页岩,TOC一般为0.9%~15.9%,平均为3.0%,干酪根类型以Ⅱ和Ⅲ型为主,Ro为0.78%~1.42%,暗色泥页岩发育相对稳定,为页岩气赋存的有利层系。沙河街组为典型的湖相沉积[18-19],发育多层富有机质暗色泥页岩;其中,沙四段和沙三段为有利的页岩气赋存层段,主要分布于济阳坳陷;2套泥页岩的干酪根类型均以Ⅰ和Ⅱ型为主,TOC较高,最高可达18.1%,Ro为0.35%~1.70%,主体处于成熟演化阶段,沙四段局部地区已进入高成熟演化阶段。虽然大汶口组[20]、李家崖组[21]、沙一段和东营组暗色泥页岩的TOC较高,但其有机质演化程度较低,Ro一般小于0.65%,主体处于低成熟演化阶段,页岩气勘查开发潜力差。
总之,济阳坳陷干酪根类型为Ⅰ—Ⅱ型的沙河街组湖相沉积、昌潍坳陷干酪根类型为Ⅱ—Ⅲ型的孔二段湖相沉积和阳谷—茌平、鲁西南及黄河北等地区干酪根类型为Ⅱ—Ⅲ型的太原组—山西组海陆交互相沉积的富有机质泥页岩均为山东省页岩气资源勘查的有利目标(图1)。
表1 山东省不同层系页岩气形成条件评价Table1 Evaluation of shale gasformation conditions in different strata in Shandong Province
页岩气主要以游离气、吸附气和溶解气等多种形式赋存于富有机质泥页岩中[11]。目前,中外页岩气资源潜力评价方法有体积法、类比法、统计法、成因法和动态法等[22-23]。在勘查阶段主要采用体积法和类比法,其中体积法进行页岩气资源评价的主要参数包括泥页岩的有效厚度、含气面积、密度和含气量,其计算式为:
泥页岩的密度可以根据实测数据获取,有效厚度和含气面积需结合含气量通过地质和地球物理方法分析确定。因此,泥页岩含气量是体积法计算页岩气资源量的关键参数。
现场解析法是获取泥页岩含气量最直接的方法[11],但仅依据单井岩心现场解析实验数据不能全面反映所在坳陷(盆地)整体的含气量特征。中外许多学者对多个盆地研究发现,泥页岩的总有机碳含量与含气量之间具有良好的线性关系[24],且不同地区、不同类型富有机质泥页岩的总有机碳含量与含气量之间的线性关系存在差异。为更加合理、准确地确定不同地区泥页岩的含气量,笔者利用干酪根类型为Ⅱ—Ⅲ型的聊页参1井、鱼页参1井山西组—太原组海陆交互相泥页岩,干酪根类型为Ⅱ—Ⅲ型的昌页参1井孔店组湖相泥页岩,以及干酪根类型为Ⅰ—Ⅱ型的济页参1井沙河街组湖相泥页岩共计231个现场解析实验获取的泥页岩含气量数据,研究含气量与总有机碳含量、热解S1参数(300℃检测的单位质量烃源岩中的烃含量)、氯仿沥青“A”含量等参数的关系,建立不同类型泥页岩含气量计算模型,以获得不同地区的泥页岩含气量。
2.2.1 干酪根类型为Ⅱ—Ⅲ型的海陆交互相泥页岩
该类泥页岩为山西组—太原组富有机质泥页岩,主体处于成熟-高成熟演化阶段。从鱼页参1和聊页参1井现场解析实验所获取的泥页岩含气量与总有机碳含量的关系(图2)可以看出,页岩含气量随总有机碳含量的增加而增大,通过二者关系建立的含气量计算公式为:
图2 干酪根类型为Ⅱ—Ⅲ型的海陆交互相泥页岩总有机碳含量与含气量的关系Fig.2 Relationship between total organic carbon content and gas content of marine-continental transitional shale with typeⅡ-Ⅲkerogen
2.2.2 干酪根类型为Ⅱ—Ⅲ型的湖相泥页岩
该类泥页岩主要为昌潍坳陷新生界孔二段泥页岩,主体处于成熟-高成熟演化阶段。利用昌页参1井现场解析实验所获取的泥页岩含气量与总有机碳含量的关系(图3)可以看出,泥页岩含气量随总有机碳含量的增加而增大,进而建立含气量计算公式为:
2.2.3 干酪根类型为Ⅰ—Ⅱ型的湖相泥页岩
该类泥页岩为济阳坳陷沙四段和沙三段泥页岩,主体处于成熟演化阶段,局部地区已进入高成熟演化阶段。从该类型泥页岩含气量与总有机碳含量的关系(图4)可以看出,虽然随着总有机碳含量的增加,泥页岩含气量具有增加的趋势,但无法拟合线性方程,而从泥页岩含气量与S1的关系来看,随着S1的增加,含气量逐渐增大,二者的相关性更为明显。分析认为济阳坳陷沙河街组泥页岩主体处于成熟演化阶段,以油气共生为主,泥页岩含气量取决于含油量和气油比,以溶解气为主。根据泥页岩的含油量和气油比,可以建立含油量与含气量的计算模型图版,进而获得不同演化阶段泥页岩的含气量。
图3 干酪根类型为Ⅱ—Ⅲ型的湖相泥页岩总有机碳含量与含气量的关系Fig.3 Relationship between total organic carbon content and gas content of lacustrine shale with typeⅡ-Ⅲkerogen
图4 干酪根类型为Ⅰ—Ⅱ型的湖相泥页岩总有机碳含量、S1与含气量关系Fig.4 Variation of total organic carbon content and S1 with gas content of lacustrine shale with typeⅠ-Ⅱ kerogen
泥页岩含油量 氯仿沥青“A”含量是常规油气勘探中常用的指标,其分析方法成熟,基础资料丰富。由于氯仿沥青“A”的组成与原油接近,可以较好地反映泥页岩中的含油量,但在测试过程中存在轻烃损失[25-27],因此根据氯仿沥青“A”含量计算泥页岩含油量的公式为:
氯仿沥青“A”含量可以通过样品分析测试获得。Ka可以利用自然演化剖面法与实验方法相互验证来获取,其中自然演化剖面法是应用不同埋深自生自储油藏中的原油轻烃组分含量来确定其母质烃源岩的氯仿沥青“A”含量的轻烃恢复系数[25];实验方法是选取新钻样品,应用氟利昂低温抽提和热释烃定量方法确定C15-轻烃组分含量,应用氯仿沥青“A”含量获取岩石中C15+重烃组分含量,将测得的C15-轻烃组分含量与C15+重烃组分含量相加,获得岩石中的总含油量,进而获得所测埋深岩石的Ka[26],且实验方法可用以验证自然演化剖面法获取Ka的可信度。
分析济阳坳陷沙四段上亚段—沙三段下亚段泥页岩Ka与Ro的关系发现,随成熟度的增加,Ka增大。在低成熟阶段,Ro小于0.5%,Ka较低,小于1.1;Ro从0.7%增至1.4%,Ka从1.16迅速增至1.56,这一变化与烃源岩的生烃转化以及生烃产物组分随有机质演化向低分子转化的变化规律一致[28]。
气油比 气油比是根据生烃物理模拟、生烃数值模拟和源内油藏统计方法得到的含油量与含气量的比值拟合获得的。对比上述3种方法获取的气油比随埋深的变化特征发现,其均随埋深的增加而增大,但存在一定的差异。其中,源内油藏统计方法获得的气油比曲线是不同埋深下源内油藏的日试油量与日试气量最小比值的包络线,由于深部数据较少,因此仅可以推测至埋深约为3 800 m(图5)。当埋深小于3 700 m时,在源内油藏的富集及保存过程中,地层水的流动会溶解并带走部分气体,且气体扩散作用会降低油藏的含气量;而在生烃物理模拟和生烃数值模拟过程中,未发生气体的扩散及水溶解等损失,因此,二者的气油比高于源内油藏统计方法获得的气油比。当埋深小于3 700 m时,生烃物理模拟与生烃数值模拟方法获得的气油比的大小和变化基本一致,这可能是由于温度相对较低,且时间相对较短,在生烃物理模拟过程中未发生明显的原油裂解。当埋深大于3 700 m时,生烃数值模拟方法得到的气油比小于生烃物理模拟方法得到的气油比,这是由于生烃数值模拟方法的生烃模型是基于干酪根有机质生油和生气模式,即认为所有的气均由干酪根生成,未考虑生烃烃类的二次裂解,而在实际演化过程中烃源岩生成的油除了部分被排出外,烃源岩内部仍存在较多的残留油,在一定的温度条件下,这些残留油会发生裂解成气;而在生烃物理模拟过程中,除了发生干酪根生油和生气反应之外,还会发生烃源岩内部原油的部分裂解。
综合以上3种方法,以源内油藏统计方法获得的气油比代表最小气油比,以生烃数值模拟和生烃物理模拟方法获得的气油比代表最大气油比,拟合得到埋深小于3 700 m泥页岩的气油比曲线;以生烃数值模拟方法获得的气油比代表最小气油比,以生烃物理模拟方法获得的气油比代表最大气油比,拟合得到埋深大于3 700 m泥页岩的气油比曲线(图5)。可以看出,当埋深小于3 700 m时,随埋深的增加,气油比增大,但变化幅度相对较小;而当埋深大于3 700 m时,气油比明显升高;当埋深大于4 000 m时,气油比增幅更为明显;至埋深约为4 300 m时,气油比最大可达1 000 m3/t。为验证利用3种方法获得的气油比反推页岩气油比变化规律的可靠性,对研究区利页1和利673井泥页岩样品开展现场解析实验,测定其含气量,并结合氯仿沥青“A”含量恢复其含油量,进而将计算得到的气油比投影于由3种方法拟合得到的气油比曲线上(图5),发现其吻合度均较好,表明拟合得到的气油比曲线可用于济阳坳陷泥页岩含气量的计算。
图5 济阳坳陷沙河街组泥页岩气油比随埋深的变化Fig.5 Relationship of mud shale gas oil ratio and burial depth in Shahejie Formation of Jiyang Depression
以泥页岩分布面积大于100 km2、厚度大于30 m、总有机碳含量大于2.0%、埋深为300~4 500 m、总含气量大于0.5 m3/t、有机质类型为Ⅰ—Ⅱ型干酪根且Ro不小于0.7%和有机质类型为Ⅱ—Ⅲ型干酪根且Ro不小于0.5%圈定页岩气有利区边界,计算山东省页岩气有利区的总资源量为1.42×1012m3(表2)。其中,有机质类型为Ⅱ—Ⅲ型干酪根的山西组—太原组海陆交互相页岩气的资源量为5 736.75×108m3,占山东省页岩气有利区总资源量的41%,且其分布最广,面积为4 809.69 km2,主要分布于鲁西南含煤区的济宁—鱼台凹陷区、成武凹陷中西部、成武凹陷东部、单县煤田、金乡煤田,阳谷—茌平含煤区的东北部,黄河北含煤区的中部和临清坳陷的贾镇潜凹陷;有机质类型为Ⅱ—Ⅲ型干酪根的孔二段湖相页岩气的资源量为1 026.55×108m3,占山东省页岩气有利区总资源量的7%,面积为216.39 km2,主要分布于昌潍坳陷的潍北凹陷;有机质类型为Ⅰ—Ⅱ型干酪根的沙四段和沙三段湖相页岩气的资源量最大,为7 414.67×108m3,占山东省页岩气有利区总资源量的52%,面积为3 381.35 km2,主要分布于济阳坳陷。
表2 山东省页岩气有利区资源量统计Table2 Resources of shale gas favorable area in Shandong Province
相比而言,昌潍坳陷孔二段页岩气有利区的分布面积较小,但资源丰度较高,达4.74×108m3/km2,可形成小而肥的页岩气富集。上古生界山西组—太原组页岩气的资源丰度为0.90×108~2.29×108m3/km2,其中阳谷—茌平页岩气有利区的面积较小,但其页岩气资源量为1 053.75×108m3,且资源丰度最高,达2.29×108m3/km2,是上古生界页岩气最为富集的地区。济阳坳陷沙四段和沙三段页岩气的资源量最大,但其资源丰度低于昌潍坳陷孔店组,为2.19×108m3/km2,也具有一定的页岩气勘探前景。
山东省富有机质泥页岩发育层系多,有机质类型和演化阶段多样。干酪根类型为Ⅰ—Ⅱ型的济阳坳陷古近系沙河街组湖相泥页岩、干酪根类型为Ⅱ—Ⅲ型的昌潍坳陷孔二段湖相泥页岩和干酪根类型为Ⅱ—Ⅲ型的阳谷—茌平、鲁西南及黄河北等地区太原组—山西组海陆交互相富有机质泥页岩均为山东省页岩气资源勘查的有利目标。建立适用于山东省富有机质泥页岩的、以总有机碳含量计算干酪根类型为Ⅱ—Ⅲ型的湖相和海陆交互相泥页岩、以气油比计算干酪根类型为Ⅰ—Ⅱ型湖相泥页岩的含气量计算模型;预测山东省页岩气有利区资源量为1.42×1012m3,主要分布于临清坳陷、黄河北含煤区、阳谷—茌平含煤区、鲁西南含煤区、昌潍坳陷、济阳坳陷;昌潍坳陷孔二段可形成小而肥的页岩气富集,阳谷—茌平含煤区是上古生界太原组—山西组最有利的页岩气勘探区,济阳坳陷沙四段和沙三段具有一定的页岩气勘探前景。研究成果为山东省页岩气进一步勘查开发提供了依据。
符号解释:
TOC——总有机碳含量,%;Q油——泥页岩的含油量,kg/t;A ——单位岩石的氯仿沥青“A”含量,%;Ka——氯仿沥青“A”含量的轻烃恢复系数;GZ——页岩气的总资源量,108m3;S——泥页岩的含气面积,km2;H——泥页岩的有效厚度,m;ρy——泥页岩的密度,t/m3;CZ——泥页岩的含气量,m3/t。