◆
(山东省德州市陵城区教师进修学校附属小学)
数学模型是对事物的系统特征或数量进行针对或参照,并运用形式化数学语言及符号概括或近似地表达数学结构的一种方式。广义上认为,数学学习过程中各种各样的基础算法与概念都能称之为数学模型。如加减乘除都具有其自身的独特现实原型,是由其自身的对应原型为前提进行抽象化而生成的;而一些狭义的解释表明,唯有一些对特定事物及问题之间数学结构关系进行反映的才可以叫做数学模型。如分数是对物品进行平均分派的数学模型;小数运算是元、角、分进行计算的模型;1200人的学校里会有两人是同一个生日,这个数学模型就是抽屉的原理。
数学的模型思想是指结合相应问题进行针对性数学模型的建立,并运用数学模型对问题进行有效解决的数学思想。从其发展过程可以看出,数学本质是在不断概括、抽象及模式化过程中逐渐地丰富及发展起来的,唯有有效地上升到模型意义上,才属于真正意义上的数学学习。在小学数学教学中,模型思想教学是拥有鲜明的初始性与阶段性特点的,其是运用更多的数学建模思想对小学数学教学进行有效指导的。结合学生的日常生活经验使学生把经历的实际问题进行抽象化,并变成数学模型做出进一步解释与应用,这一过程使得学生在了解数学知识的同时,从诸多方面(情感、思维及价值观)获得不断发展,在此前提下形成了数学的模型思想,从而调动学生数学学习的兴趣及应用意识。
1.公式数学模型
在小学数学学习中数学公式十分重要,其是对客观世界的数量关系进行有效反映的符号,这种数学内容是在现实世界中经过抽象化转变而成的数学模型,其由于抛弃了一些事物的个体属性,而变得更具典型意义。
如在小学数学学习中常常会涉及到工程问题,这种问题主要是针对工作的总量、效率及时间三者间的关系进行研究的。可以表达为公式:总量/效率=时间。运用这个具体的数学模型,能够进行许多不同类型问题的解决。问题:“一项建筑工程甲队修建20天可以完成,乙队修建30天完成。那么,两队合建要多少天完成?”“锅炉房计划15天用煤64吨,对烧煤方式进行改进之后,每天可以节约用煤25%,根据这样计算,煤够烧几天?”以上这两个问题属于不同类型的问题,但是都可以运用以上公式进行实际的解决。
2.方程数学模型
在小学数学中方程也属于数学模型的一种,列方程可以对应用题解答的难度进行有效降低。通过方程这种数学模型进行应用题的解题要注意:在对问题进行有效理解的前提下,把相应问题归为若干未知量;假设未知量已求出,结合相关条件把未知量与已知量列出相应的关系式;在已知的条件中把一部分条件分析出来,以利于通过不同方式对同一量做出表示,进而获取相应的联系未知量方程式,直至获取方程及与未知量个数相同的具体方程组;对方程组进行求解,并对其答案是否正确做出检验。
问题:“已知公鸡与白兔一共有35只,两种动物的脚共有100只。那么,请问公鸡与白兔各有多少只?”解答这种问题时首先可以把公鸡设为X只,公鸡脚就有2X只;白兔就有(35-X)只,白兔脚就有4*(35-X)只,接下来根据已知两种动物的脚一共有100只这一条件建立方程的数学模型:2X+4*(35-X)=100,可以得出X=20,因此,可得公鸡一共有20只,而白兔共有15只。
3.集合的数学模型
在数学学习中把应用题中的相关条件关系看作集合关系,并且运用建立相关集合模型的方式,以集合的交、并、差、补等相关运算对问题进行求解。
问题:班级共有50名学生,有25人订购了“少年科技报”,10人订购了“小学生画报”,有2人同时订购了两种报纸,求出没有订购两种报纸的人数?
分析这个应用题时可以先构造出集合模型,利用矩形平面来代表全班的同学,其中A部分代表订购“少年科技报”的学生,B部分代表订购“小学生画报”的学生,二者交集部分是两种报纸同时订购的学生,而阴影区便是没有订购两种报纸的学生人数。从这种集合模型可以得出:订购“少年科技报”而没订购“小学生画报”的学生:25-2=23人,那么两种报纸都未订购的学生:50-(23+10)=17人。
1.通过多元化的策略进行模型思想培养
在进行小学数学的教学过程中,教师要有效转变传统的单一教学方式,采用多元化的教学模式对小学生数学模型思想进行有效培养。
(1)应用多媒体教学策略。这种教学方式可以有效改进传统教学模式的抽象性及枯燥性,在教学中有效发挥出其知识性与趣味性的特点,运用动态视觉的感官体验,进一步激发出小学生的数学学习兴趣,从而有效实现数学教学的相关素质化改革。例如,教师在引导学生学习“减法的运算法则”这一知识点时,可以通过多媒体的方式展示给学生“2个玩具加上3个玩具变为5个玩具”这种加法运算的旧有模型。接下来再为他们建立“3个玩具减2个玩具剩1个玩具”的减法运算新模型,从而实现应用多媒体直观培养小学生数学模型思维的目标。
(2)运用自主学生及合作学习相结合策略。这种学习策略可以有效明确学生的主体地位,有效培养出小学生的独立学习及探究能力,引导小学生进行自主思考,从而使他们可以具备自主的建模能力。教师可以结合教学目标与教学内容相关要求,给学生设计出针对性的学习探究任务,把学生分成小组并为每个小组提供不同道具,同时带领学生结合学习任务做出相应的自主探究,通过这种实践操作的形式来有效培养学生的相关模型思想。例如,教师指导学生应用数学模型对“价格计算”这一学习任务进行有效完成,带领学生对不同条件价格模型做出自主构建,进一步培养小学生的数学模型思想。
2.结合实践操作有效培养学生的数学模型思想
在小学数学的学习过程中,教师在对学生的数学模型思想进行有效培养的同时,要注重打破数学习题的训练假设情境,结合生活实际充分进行数学模型思想的培养及渗透。把数学教学和实际的生活紧密联系,进一步培养学生的实际应用能力,提升他们的数学综合素养。教师在进行课堂教学时要对学生进行积极引导,使他们可以更积极地参与实践,运用实践操作的形式充分调动小学生的创新思维,启发他们进行自主思考,有效激发出他们的求知欲望,推动小学生数学模型思想的成型及发展;教师还要注重引导学生结合所学数学知识对生活中实际问题进行有效解决,有目的、有计划地引导学生进行课外的探究式学习,让他们可以发现实际生活中的诸多数学趣味题。努力在贴近生活的情境中对小学生数学模型思维及建模能力做出进一步培养,实现提升数学学习效率、小学数学教学发展的目标。
在小学数学教学中,教师要注重在数学教学中对数学模型思想的渗透,运用科学合理的策略对其数学模型思想进行培养,并加强针对性的实践教学,通过生活化的教学策略逐渐加强小学生对模型思想的学习。同时,教师还需要在具体数学教学中不断进行经验的总结与反思,对小学生的模型思想培养策略进行不断地创新。