杨银菊 陈爱国 刘光亮 张彦 王树声
摘要 绿原酸是重要的植物苯丙素类次生代谢产物之一,与植物的食品风味和药用生物活性等密切相关,其生物合成与调控研究一直是科研人员所关注的焦点。本文综述了烟草绿原酸生物合成途径中关键节点苯丙氨酸解氨酶基因、肉桂酸-4-羟化酶基因、对-香豆酸辅酶A连接酶基因、羟基肉桂酰辅酶A:奎尼酸羟基肉桂酰转移酶基因、羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶基因、对-香豆酸3′-羟化酶基因的研究进展,并进一步展望了烟草绿原酸生物合成代谢调控的研究方向,旨在为烟草绿原酸生物合成途径的深入研究和定向调控提供参考。
关键词 烟草;绿原酸;生物合成;关键酶;基因
中图分类号 S572 文献标识码 A 文章编号 1007-5739(2018)13-0005-04
Research Progress on Key Enzyme Genes in Chlorogenic Acid Biosynthesis Pathway
YANG Yin-ju 1,2,3 CHEN Ai-guo 1,2 LIU Guang-liang 1,2 ZHANG Yan 1,2 WANG Shu-sheng 1,2 *
(1 Tobacco Research Institute of Chinese Academy of Agricultural Sciences,Qingdao Shandong 266101; 2 Key Laboratory of Tobacco Biology and Processing,Ministry of Agriculture; 3 Graduate School of Chinese Academy of Agricultural Sciences)
Abstract Chlorogenic acid is one of the important phenylpropanoids formed by plants secondary metabolism,which is closely related to plant food flavor and medical biological activity. Accordingly,the researches on the chlorogenic acid biosynthetic pathway and its regulation have been the focus of researchers.In this paper,considering the biosynthesis pathway of tobacco chlorogenic acid,we described the molecular regulations of the key nodes containing phenylalanine ammonia-lyase gene,cinnamic acid 4-hydroxylase gene,4-coumarate-CoA ligase gene,Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase gene,hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase gene,and ρ-coumaroylester 3′-hydroxylases gene.Additionally,the future researches on metabolic regulation of tobacco chlorogenic acid biosynthesis were further prospected,in order to provide reference for better understand the biosynthetic mechanism of tobacco chlorogenic acid and its regulation.
Key words tobacco;chlorogenic acid;biosynthesis;key enzyme;gene
綠原酸(chlorogenic acid,CGA)在植物界中广泛存在,主要分布于忍冬科、菊科、杜仲科和茄科[1]。烟草(Nicotiana tabacum L.)是茄科烟草属植物,其绿原酸含量可达3%[2],相对较高。烟草中,绿原酸除了本身具有清香风味之外,还可以在多酚氧化酶等的作用下生成吡嗪、吡啶、吡咯类等有坚果香物质[3],赋予烟草制品优雅的香气,增加烟草制品的香气量。此外,绿原酸分子含有不饱和双键、酯键与多元酚等,是重要的天然抗氧化剂,与植物细胞对低温、紫外线以及病害等非生物和生物抗性密切相关[1,4]。因此,研究烟草中绿原酸的生物合成与积累对提高烟草品质和抗逆性具有重要意义。目前,烟草中的绿原酸生物合成途径及其关键酶基因研究主要集中在酶活性与烟株抗逆活动之间的关系,而对该途径中关键基因的特征和功能及其与烤烟品质形成关系研究较少。因此,本文综述了烟草绿原酸生物合成途径及其关键酶基因的研究进展,为定向调控烟草中绿原酸的生物合成从而改善烤烟品质提供参考。
1 烟草绿原酸生物合成途径
绿原酸是咖啡酸与奎尼酸的反应产物。烟草中,绿原酸主要在叶片中合成[5]。目前,普遍认为绿原酸的生物合成主要有2条途径:一是HQT催化咖啡酰辅酶A和奎尼酸通过酯交换合成绿原酸[6](图1,Ⅰ);二是咖啡酰苷作物活性中间体与奎宁酸酯交换生产绿原酸[7](图1,Ⅱ)。也有报道认为,存在第3条可能的途径,即在HCT的催化下生成对-香豆酰奎尼酸,随后经C3H羟基化作用生成绿原酸[1](图1,Ⅲ);然而,在拟南芥中HCT和C3H均有活性时,并不积累绿原酸,使得绿原酸的该生物合成途径是否存在受到质疑[1]。
2 烟草绿原酸生物合成关键酶基因
2.1 苯丙氨酸解氨酶基因
苯丙氨酸解氨酶(phenylalnine ammonialyase,PAL)是苯丙烷代谢途径的第一个关键酶,催化苯丙氨酸脱氨生成反式肉桂酸(图1),是连接初生代谢和次生代谢的关键酶(表1)。因此,PAL在植物生长发育、应激防御中起关键作用。许多涉及苯丙烷途径的应激反应可以诱导PAL活性。本课题组研究表明,4 ℃低温处理后,烤烟品种K326和红花大金元PAL活性分别增加163.95%和159.39%;NaCl胁迫处理后K326和红花大金元PAL分别增加126.29%和129.24%,增强了红花大金元材料中隐绿原酸合成代谢及K326材料中绿原酸合成代谢[8]。光照也可刺激PAL活性;遮荫可以抑制PAL的活性,白光处理后 PAL活性远大于其他光质处理,蓝光处理明显降低了PAL活性[9]。PAL基因在响应生物和非生物胁迫如机械损伤、低温、病原物侵染、缺素和信号物质(茉莉酸、水杨酸、脱落酸)处理时主要受转录水平调控[10]。法国豆的3个PAL基因的转录水平均受机械损伤诱导[11]。
在植物中,苯丙氨酸解氨酶是多基因家族编码的。例如,杨树[12]PtrPAL基因家族由5个成员(PtrPAL1-5)组成,黄瓜[13]PAL家族有7个成员,番茄[14]PAL数目多达26个,拟南芥[15]和烟草中均有4个PAL基因。烟草的4个PAL基因分成2个亚家族,NtPAL1和NtPAL4为一个亚家族,NtPAL2和NtPAL3为一个亚家族,并且这4个基因在根、茎、叶、花中均有表达,其中NtPAL4在雄蕊、木质部和根中表达量较高,但在茎、髓组织中几乎检测不到;除木质部和叶片外,所有组织中的NtPAL2转录水平均低于NtPAL1和NtPAL3;大多数NtPAL在成熟叶和髓中表达水平较低[11]。
2.2 肉桂酸-4-羟化酶基因
肉桂酸-4-羟化酶(cinnamic acid 4-hydroxylase,C4H),属于细胞色素P450单加氧酶CYP73家族,催化肉桂酸生成香豆酸。C4H的表达和活性受光线、病原物和机械损伤等诸多因素的调控[16],研究表明,适度遮荫有利于提高K326和红花大金元的C4H活性,遮荫程度较高时(44%自然光),2个品种C4H活性均受到抑制[9]。4 ℃低温处理后,K326和红花大金元C4H活性分别增加218.83%和189.36%。此外,NaCl处理也能提高C4H活性[8]。
C4H主要参与木质素生物合成。桉树C4H表达下调木质素含量降低[17]。在苜蓿中,C4H表達下调的植株不仅木质素含量降低,而且S/G比值也降低[18]。烟草C4H表达下调也表现出相似的现象[19]。青蒿C4H基因沉默植株反式肉桂酸积累,香豆酸、总酚、花青素、C4H和PAL活性降低[20]。Huang等[21]研究表明,防御/应激途径的信号成分子如茉莉酸甲酯(MJ)、脱落酸(ABA)和紫外线B辐射(UV-B)可刺激丹参SmC4H转录水平上调。
C4H已在普通烟草中得到克隆,本课题组[22]克隆得到了K326和红花大金元烤烟品种NtC4H1和NtC4H2基因的全长cDNA序列,开放阅读框均为1 518 bp,编码505个氨基酸(表1)。并且发现NtC4H1和NtC4H2在2个品种中表达模式存在差异。
2.3 4-香豆酸辅酶A连接酶基因
4-香豆酸辅酶A连接酶(4-coumarate-CoA ligase,4CL),催化对香豆酸生成对香豆酰辅酶A。除了对香豆酸之外,4CL异构体能够利用多种羟基肉桂酸衍生物作为底物,例如4CL可以催化咖啡酸生成咖啡酸辅酶A,以阿魏酸作为底物生成阿魏酰辅酶A。由于4CL处于初级苯丙烷代谢的终端位置以及能够利用多种相关底物,因而4CL在碳源流入苯丙烷代谢的特定分支起关键作用[23]。
4CL以基因家族的形式存在,在拟南芥中编码4CL酶的基因有3个,即At4CL1、At4CL2和At4CL3[24]。而在普通烟草中则由Nt4CL1和Nt4CL2 这2个基因编码4CL[25]。系统进化树分析表明,4CL基因通常被分为2个不同的基因簇(Class Ⅰ和Class Ⅱ),它们在单子叶植物和双子叶植物中具有不同的生理功能[26]。Class Ⅰ 4CLs参与木质素和其他结构相关的苯丙素衍生物的生物合成,而Class Ⅱ 4CLs参与类黄酮生物合成[27-28]。Class Ⅰ 4CLs表达模式在不同物种木质化区域基本一致。例如,拟南芥[29]At4CL1和At4CL2主要局限于维管束组织,白杨[30] Pt4CL1主要在木质部中表达。通过检测mRNA的积累和启动子活性发现马铃薯(Solanum tubero-sum)[31],烟草(Nicotiana tabacum)[32]和水稻(Oryza japonica)[33]Class Ⅰ 4CLs也具有相似的表达模式。Class Ⅱ 4CLs表达通常在花和非木质化组织。杨树[30] Pt4CL2优先在叶和茎的表皮及花中表达。拟南芥花、成熟叶、长角果、茎和根中也已经检测到At4CL3的表达[34]。
有研究表明,将4CL1基因转入到烟草中,会抑制烟草内源4CL基因表达,使得4CL活性降低,4CL的代谢底物积累[35]。CaMV启动子35S正义融合4CL1转基因烟草叶片和茎4CL酶活性增加,木质素含量增加;sjGRP1.8正义融合4CL1转基因烟草中叶片4CL酶活性未见增加,而茎4CL活性提高,叶片木质素含量与未转基因植株没有差异,而茎部木质素含量增加25%[36]。Pt4CL1正义转基因烟草叶片及茎中酶活性和木质素含量分析也得到了相似的结果[37]。
本课题组[22]克隆得到K326和红花大金元烤烟品种Nt4CL1和Nt4CL2全长cDNA序列,开放阅读框(ORF)长度分别为1 644 bp和1 629 bp(表1)。同时研究发现,Nt4CL在木质部的表达高于韧皮部。在适熟期红花大金元和K326, 4CL活性大小均表现为中部叶>下部叶>上部叶,这与Nt4CL1在不同组织中表达水平一致。
2.4 羟基肉桂酰辅酶A:奎尼酸羟基肉桂酰转移酶基因
羟基肉桂酰辅酶A:奎尼酸羟基肉桂酰转移酶(Hydrox-ycinnamoyl-CoA:quinate hydroxycinnamoyl transferase,HQT),是绿原酸生物合成最后一步的关键酶,催化咖啡酰辅酶A和奎尼酸进行酯交换生成CGA。HQT、HCT属于BAHD超家族的一大类酰基-辅酶A-依赖的酰基转移酶,具有酰基受体的特异性。研究发现,HQT基因与HCT基因是紧密连锁的,并且HQT与HCT可以催化香豆酰莽草酸与香豆酰奎尼酸酯的生物合成[38]。HQT是绿原酸生物合成所必需的酶。在烟草植株中瞬时表达或在番茄中稳定转化使HQT基因表达下调导致绿原酸含量显著降低(在番茄中减少高达98%)。相反,烟草和番茄植株过表达HQT后绿原酸水平大幅提高[38]。利用高效液相色谱法(HPLC)测定咖啡绿原酸含量,结合RT-qPCR分析绿原酸合成关键酶基因HCT、HQT、C3H1和CCOAOMT1在不同组织中的表达量,结果表明,HQT高表达与绿原酸积累有关[39]。RNAi抑制HQT基因表达导致CGA减少90%和早花[40]。此外,该研究还表明,HQT和PAL之间存在一个调节回路,在HQT被抑制的路径上观察到PAL基因表达量下调和酶活性下降。Chang等[41]也有相关的报道,AtPAL2在烟草中过表达使绿原酸含量增加2倍,而在HQT沉默的AtPAL2过表达植株中绿原酸含量减少50%。
2.5 羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶基因
羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶(hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltr-ansferase,HCT)是木质素单体生物合成途径中的关键酶,催化香豆酰辅酶A(p-coumaroyl CoA)发生羟基化作用转化成咖啡酰辅酶A(caffeoyl CoA),也是控制木质素H-单体转化为G/S-单体的关键酶[42]。Hoffmann等[43]已从烟草中纯化得到HCT,对其活性进行分析表明,该酶能够催化莽草酸或奎尼酸与香豆酸和咖啡酸生成酯,对莽草酸的亲和力更高。此外,还发现烟草HCT能催化绿原酸水解,形成咖啡酰辅酶A和奎宁酸。
到目前为止,已经相继有拟南芥、烟草、番茄、桉树、辐射松、洋姜和洋白菜等多个物种的HCT基因被克隆[38]。在朝鲜蓟中,编码HCT基因的cDNA已被分离得到[44],同时发现HCT有助于绿原酸的生物合成。
HCT在植物中分布具有一定的组织特异性,在烟草中从茎、叶柄、根部、雄蕊、雌蕊、花瓣、幼叶到老叶其分布顺序依次减少,而在拟南芥中,HCT在茎中分布较多,并且发现蛋白含量与基因表达紧密相关[42]。烟草HCT还可能参与绿原酸向咖啡酰辅酶A的再分配,因为烟草植株HCT沉默后绿原酸在茎杆中大量积累[45]。李 洋等[46]运用高效液相色谱(HPLC)检测转基因烟草植株绿原酸和类黄酮物质的含量变化,表明NtHCT基因不仅参与绿原酸合成的调控,而且正向调控类黄酮物质的生物合成。
2.6 对-香豆酸3′-羟化酶基因
对-香豆酸3′-羟化酶(ρ-coumaroylester 3′-hydroxylases, C3H)是绿原酸合成途径中另一类关键酶,研究发现,这类酶是由细胞色素CYP98A编码的[47]。当它被酯化为莽草酸或奎尼酸时可催化香豆酸的3位发生羟基化反应。C3H基因最早在拟南芥中被克隆。目前,已从拟南芥、银杏、毛竹、火炬松、小麦、芝麻、杨树等多种植物中成功克隆到C3H基因[38]。Schoch等[48]采用功能基因克隆的方法从拟南芥细胞色素P450中分离到CYP98A3基因,并证明CYP98A3是C3H,它主要在植物木质部中表达,是控制植物木质素合成代谢中的H单体转为G/S单体的关键酶。Raes等[49]从拟南芥基因组中分离到3个C3H基因,发现只有一个基因(C3H1)在所有组织中表达,其他2个基因仅在特定发育阶段的特定组织中表达。NtC3H基因参与烟草中类黄酮和绿原酸等次生代谢物质的合成。李 洋等[45]将NtC3H在烟草中过表达,发现转基因烟草叶片中绿原酸及芦丁含量分别提高了3.6倍和6.1倍,山奈酚芸香苷含量提高了24.6倍。
3 展望
绿原酸具有广泛的生理活性和药理活性,在医药、食品、日用化工等行业具有广阔的应用前景。因此,绿原酸合成代谢已经引起了广大研究者的关注。特别是随着分子生物学的发展,对绿原酸代谢通路的关键酶基因表达开展了大量的研究,并取得了巨大的进展,但目前仍然有许多问题有待进一步研究。尽管绿原酸生物合成途徑关键酶基因的启动子调节表达模式已经在多个物种中报道,但有些启动子的核心结构域和功能性顺式作用元件尚未得到表征,还应进一步研究。不同的生物体、组织、发育阶段和环境因子等多种因素均可影响绿原酸含量及其同分异构体组分比例。因此,如何通过现代生物技术改变关键因素来调控绿原酸的生物合成将成为研究热点之一。催化绿原酸合成的关键酶大多为多基因编码,采取多基因转化策略是未来提高绿原酸合成和积累的重要方向。
烟草中绿原酸是最主要的多酚类物质,与烤烟香气质和香气量密切相关。目前,烟草中绿原酸合成积累研究主要侧重于产物的积累及其影响因素研究,但对绿原酸合成代谢与积累机制缺乏深入的理解,不利于烟草香气质量的定向改善,已成为制约我国烤烟定向提升香气质量的重要“瓶颈”。因此,以烟草、番茄和马铃薯等近缘物种的基因组序列信息为基础深入研究绿原酸合成代谢调控机制,同时利用转录组学与代谢组学等多组学联合的方法揭示绿原酸代谢流的分配规律以及与其他代谢途径之间的互作机制,具有重要意义。此外,将绿原酸生物合成途径中的关键酶基因在微生物中进行异源表达,不仅可用于鉴定绿原酸生物合成关键酶基因的功能,而且可用于生产具有药用价值的绿原酸及其衍生物,对提高烟草医药价值和烟草行业转型升级都具有重要意义。
4 參考文献
[1] NIGGEWEG R,MICHAEL A J,MARTIN C.Engineering plants with increased levels of the antioxidant chlorogenic acid[J].Nature biotechnol-ogy,2004,22(6):746-754.
[2] 万诚,刘仁祥,聂琼,等.不同烟草品种绿原酸含量变化研究[J].山地农业生物学报,2016(2):25-28.
[3] 周恒,许自成,赵会娜,等.烟草多酚类物质的研究进展[J].浙江农业科学,2009(5):949-953.
[4] CL?魪 C,HILL L M,NIGGEWEG R,et al.Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum;consequences for phenolic accumulation and UV-tolerance[J].Phytochemistry,2008,69(11):2149-2156.
[5] ZUCKER M,AHRENS J F.Quantitative Assay of Chlorogenic Acid and its Pattern of Distribution within Tobacco Leaves[J].Plant physiology,1958,33(4):246.
[6] ULBRICH B,ZENK M H.Partial purification and properties of hydroxyc-innamoyl-CoA:quinate hydroxycinnamoyl transferase from higher plants[J].Phytochemistry,1979,18(6):929-933.
[7] VILLEGAS R J,KOJIMA M.Purification and characterization of hydroxy-cinnamoyl D-glucose.Quinate hydroxycinnamoyl transferase in the root of sweet potato,Ipomoea batatas Lam[J].Journal of Biological Chemistry,1986,261(19):8729-8733.
[8] QAMARUDDIN JOGI.Studies on the Cell Suspension Culture and Regu-lation of Phenylpropanoid Metabolism of Flue-cured Tobacco[D].北京:中国农业科学院,2015.
[9] 彭东.光质、光强对烤烟苯丙烷代谢关键酶及多酚产物的影响[D].北京:中国农业科学院,2013.
[10] IRISARRI P,ZHEBENTYAYEVA T,ERREA P,et al.Differential expr-ession of phenylalanine ammonia lyase(PAL)genes implies distinct roles in development of graft incompatibility symptoms in Prunus[J].Scientia Horticulturae,2016,204:16-24
[11] REICHERT A I,HE X Z,DIXON R A.Phenylalanine ammonia-lyase(PAL)from tobacco(Nicotiana tabacum):characterization of the four tobacco PAL genes and active heterotetrameric enzymes[J].Biochemical Journal,2009,424(2):233-242.
[12] TSAI C J,HARDING S A,TSCHAPLINSKI T J,et al.Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus[J].New Phytologist,2006,172(1):47-62.
[13] SHANG Q M,LI L,DONG C J.Multiple tandem duplication of the phenylalanine ammonia lyase genes in Cucumis.sativus L[J].Planta,2012,236(4):1093-1105.
[14] CHANG A,LIM M H,LEE S W,et al.Tomato phenylalanine ammonia-lyase gene family,highly redundant but strongly underutilized[J].Journal of Biological Chemistry,2008,283(48):33591.
[15] RAES J,ROHDE A,CHRISTENSEN J H,et al.Genome-wide characte-rization of the lignification toolbox in Arabidopsis[J].Plant Physiology,2003,133(3):1051-1071.
[16] JING,GUANSHAN,JIANGTAO,et al.Recent Advances on Key Enzyme Genes in Metabolic Pathways Related to the Synthesis of Aroma Compounds in Tobacco[J].Agricultural Biotechnology,2014,170(5):1-6.
[17] SYKES R W,GJERSING E L,FOUTZ K,et al.Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase(C3′H)and cinnamate 4-hydroxylase(C4H)genes in the lignin biosynthetic pathway of Eucalyptus urophylla× E.grandis leads to improved sugar release[J].Biotechnology for biofuels,2015,8(1):1.
[18] REDDY M S S,CHEN F,SHADLE G,et al.Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa(Medicago sativa L.)[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(46):16573-16578.
[19] BLEE K,CHOI J W,O′CONNELL A P,et al.Antisense and sense expression of cDNA coding for CYP73A15,a class II cinnamate 4-hydroxylase,leads to a delayed and reduced production of lignin in tobacco[J].Phytochemistry,2001,57(7):1159-1166.
[20] KUMAR R,VASHISTH D,MISRA A,et al.RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua[J].Scientific Reports,2016,6:26458.
[21] HUANG B,DUAN Y,YI B,et al.Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway[J].Russian Journal of Plant Physiology,2008, 55(3):390-399.
[22] 于利,張彦,陈爱国,等.烟草苯丙烷代谢途径关键酶肉桂酸-4-羟化酶,4-香豆酸-辅酶A基因的分离及表达特性分析[J].植物遗传资源学报,2014,15(5):1067-1073.
[23] LI Z,NAIR SK.Structural Basis for Specificity and Flexibility in a Plant 4-Coumarate:CoA Ligase[J].Structure,2015,23(11):2032-2042.
[24] EHLTING J,B?TTNER D,WANG Q,et al.Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms[J].The plant journal,1999,19(1):9-20.
[25] LEE D,DOUGLAS C J.Two divergent members of a tobacco 4-coumar-ate:coenzyme A ligase(4CL)gene family(cDNA structure,gene inherit-ance and expression,and properties of recombinant proteins)[J].Plant physiology,1996,112(1):193-205.
[26] PAN X,LI H,WEI H,et al.Analysis of the spatial and temporal expres-sion pattern directed by the Populus tomentosa,4-coumarate:CoA ligase Pto4CL2,promoter in transgenic tobacco[J].Molecular Biology Reports,2013,40(3):2309-2317.
[27] HU W J,KAWAOKA A,TSAI C J,et al.Compartmentalized Expression of two Structurally and Functionally Distinct 4-Coumarate:CoA Ligase Genes in Aspen(Populus tremuloides)[J].Proceedings of the National Academy of Sciences,1998,95(9):5407-5412.
[28] HAMBERGER B,HAHLBROCK K.The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare,sinapate-activating and three commonly occurring isoenzymes[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(7):2209-2214.
[29] SOLTANI B M,EHLTING J,HAMBERGER B,et al.Multiple cis-regu-latory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members[J].Planta,2006,224(5):1239-1240.
[30] HU W J,KAWAOKA A,TSAI C J,et al.Compartmentalized Expression of two Structurally and Functionally Distinct 4-Coumarate:CoA Ligase Genes in Aspen(Populus tremuloides)[J].Proceedings of the National Academy of Sciences,1998,95(9):5407-5412.
[31] BECKERANDR?魪 M,SCHULZELEFERT P,HAHLBROCK K.Structural comparison,modes of expression,and putative cis-acting elements of the two 4-coumarate:CoA ligase genes in potato[J].Journal of Biological Chemistry,1991,266(13):8551.
[32] LEE D,DOUGLAS C J.Two Divergent Members of a Tobacco 4-Coumarate:Coenzyme A Ligase(4CL)Gene Family(cDNA Structure,Gene Inheritance and Expression,and Properties of Recombinant Proteins)[J].Plant Physiology,1996,112(1):193-205.
[33] GUI J,SHEN J,LI L.Functional characterization of evolutionarily diver-gent 4-coumarate:coenzyme a ligases in rice[J].Plant Physiology,2011, 157(2):574-586.
[34] EHLTING J,B?譈TTNER D,WANG Q,et al.Three 4-coumarate:coenzy-me A ligases in Arabidopsis thaliana,represent two evolutionarily divergent classes in angiosperms[J].Plant Journal,1999,19(1):9-20.
[35] 趙艳玲,陆海,陶霞娟,等.GRP1.8融合反义4CL1基因调控烟草木质素生物合成[J].北京林业大学学报,2003,25(4):16-20.
[36] LU H,ZENG Q,ZHAO Y L,et al.Xylem-specific expression of a GRP1.8 promoter::4CL gene construct in transgenic tobacco[J].Plant Growth Regulation,2003,41(3):279-286.
[37] TIAN X M,XIE J,ZHAO Y L,et al.Sense-,antisense-and RNAi-4CL1 regulate soluble phenolic acids,cell wall components and growth in transgenic Populus tomentosa Carr[J].Plant physiology and biochemistry,2013,65:111-119.
[38] 蒋向辉.金银花CGA合成途径关键酶基因克隆与功能分析[D].长沙:湖南大学,2013.
[39] LEPELLEY M,CHEMINADE G,TREMILLON N,et al.Chlorogenic acid synthesis in coffee:An analysis of CGA content and real-time RT-PCR expression of HCT,HQT,C3H1,and CCoAOMT1 genes during grain development in C.canephora[J].Plant Science,2007,172(5):978-996.
[40] PAYYAVULA R S,SHAKYA R,SENGODA V G,et al.Synthesis and regulation of chlorogenic acid in potato:Rerouting phenylpropanoid flux in HQT-silenced lines[J].Plant biotechnology journal,2015,13(4):551-564.
[41] CHANG J,LUO J,HE G.Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway[J].Acta biochimica et biophysica Sinica,2009,41(2):123-130.
[42] 王雪霞,薛永常,赵文超.木质素生物合成中C3H/HCT的研究进展[J].生命的化学,2008,28(5):650-653.
[43] HOFFMANN L,MAURY S,MARTZ F,et al.Purification,cloning,and properties of an acyltransferase controlling shikimate and quinate ester (下转第10页)
(上接第8页)
intermediates in phenylpropanoid metabolism[J].Journal of biological chemistry,2003,278(1):95-103.
[44] COMINO C,LANTERI S,PORTIS E,et al.Isolation and functional cha-racterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L[J].BMC Plant Biology,2007,7(1):1-14.
[45] HOFFMANN L,BESSEAU S,GEOFFROY P,et al.Silencing of hydrox-ycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransfera-se affects phenylpropanoid biosynthesis[J].The Plant Cell,2004,16(6):1446-1465.
[46] 李洋,李明,岳瑋,等.烟草NtHCT基因对次生代谢物质绿原酸和类黄酮合成的影响[J].中国烟草学报,2015,21(6):127-131.
[47] 徐晓兰.灵芝三萜和金银花绿原酸生物合成途径关键酶基因的挖掘及分析[D].北京:北京协和医学院,2013.
[48] SCHOCH G,GOEPFERT S,MORANT M,et al.CYP98A3 from Arabid-opsis thaliana is a 3′-hydroxylase of phenolic esters,a missing link in the phenylpropanoid pathway[J].Journal of Biological Chemistry,2001, 276(39):36566-36574.
[49] RAES J,ROHDE A,CHRISTENSEN J H,et al.Genome-wide characte-rization of the lignification toolbox in Arabidopsis[J].Plant Physiology,2003,133(3):1051-1071.