急性肾脏损伤标志物的研究进展及应用评价

2018-09-26 11:35刘亚东邢延芳
中国医药导报 2018年18期
关键词:肾小管肌酐尿液

刘亚东 邢延芳

[摘要] 传统反映肾脏急性损伤(AKI)的标志物在出现异常改变时,肾脏往往已发生微观形态学和组织学改变,从而严重影响患者预后。本文从生物学特点、分布表达、损伤机制、检测时机、优势及不足等方面对新型生物标志物人中性粒细胞明胶酶相关脂质运载蛋白、肾损伤分子1、胱蛋白酶抑制物C、白细胞介素18、N-乙酰-β-D氨基葡萄糖苷酶、人肝型脂肪酸结合蛋白、胰岛素样生长因子结合蛋白-7进行综述,以期为AKI早期诊断、发生发展及预测预后等方面提供临床依据。

[关键词] 人中性粒细胞明胶酶相关脂质运载蛋白;肾损伤分子1;胱蛋白酶抑制物C;白细胞介素18;N-乙酰-β-D氨基葡萄糖苷酶;人肝型脂肪酸结合蛋白;胰岛素样生长因子结合蛋白-7

[中图分类号] R692 [文献标识码] A [文章编号] 1673-7210(2018)06(c)-0032-04

[Abstract] When the markers of acute kidney injury (AKI) are abnormal, the kidney often has micromorphology and histological changes, which seriously affect the prognosis of the patients. In this paper, the biological markers of human neutrophil gelatinase-associated lipocalin, kidney injury molecule 1, cystine inhibitor C, interleukin-18, N-acetyl-beta-D glucosaminidase, liver fatty acid binding protein and insulin like growth factor binding protein-7 are reviewed in order to provide a clinical basis for the early diagnosis, development and prognosis of AKI.

[Key words] Gelatinase-associated lipocalin; Kidney injury molecule 1; Cystine inhibitor C; Interleukin-18; N-acetyl-beta-D glucosaminidase; Liver fatty acid binding protein; Insulin like growth factor binding protein-7

急性肾脏损伤(AKI)是多种病因导致的、涉及临床多学科的一种常见的、严重危害身体健康的临床症候群,是肾脏不可逆性损伤,慢性及终末期肾病独立的危险因素,每年因AKI死亡的人数高达170多万[1],其根本原因在于没有及时地对早期AKI进行有效地干预和治疗。2012年美国肾脏病基金会(KDIGO)发布的AKI指南[2]仍依靠血清肌酐和尿量的變化诊断AKI,对肾脏损伤早期诊断存在滞后性,易使患者错过最佳治疗时机[3],故需寻找早期的AKI生物标志物指导临床早期干预治疗,对降低AKI的发生率和死亡率具有重要意义。近年研究发现的若干新型生物标志物均可较血肌酐提前24~48 h预测AKI的发生[4],而AKI是一种多病因导致的临床综合征,不同AKI患者的发病机制存在差异[5],故检测单一的新型生物标志物难以作为AKI早期诊断、治疗及其预后的标准,只有了解了新型AKI生物标志物的意义,动态检测其变化规律,才能对特定的AKI患者进行及早干预及治疗,使临床早期诊断和治疗AKI成为可能。

1 中性粒细胞明胶酶相关脂质运载蛋白(NGAL)

NGAL是一种分子量为25 kD的脂质运载小分子蛋白,由中性粒细胞分泌,正常时低表达于中性粒细胞、肾小管上皮细胞和肺脏组织[5],血液中的NGAL通过肾小球滤过,在肾小管重吸收[6],具有肾脏保护功能,其机制如下:①可与螯合物竞争铁,形成NGAL-贴载体-铁复合物,将细胞内铁转运至肾小管上皮细胞,阻止细菌吸收铁;②参与肾脏的发育,NGAL-贴载体-铁复合物对肾脏上皮细胞的分化起关键作用;③具有转铁蛋白的活性,使近端肾小管上皮细胞摄取铁,刺激缺血损伤的肾小管上皮细胞再生[7],保护肾脏。

尿液NGAL在肾小球缺血2 h内显著升高,6 h达峰值,肾损伤5 d后尿液NGAL仍处于高水平[8],有肾脏的“肌钙蛋白”之称[9],在诊断AKI时,尿液NGAL优于血清NGAL[10]。尿液NGAL预测住院患者AKI透析和死亡的ROC-AUC为0.71[11]。预测AKI患者12 h内由1期发展为2期或者3期的ROC-AUC为0.72[2],且较血清肌酐检测易于采集,患者易接受。但是血清NGAL水平在预测肾小球滤过率(eGFR)异常等方面优于肌酐和胱蛋白酶抑制物C(CysC),eGFR<78 mL/min时,血清NGAL水平对eGFR异常预测的特异性为100%,敏感性为96%[12]。且血清NGAL含量与序贯器官衰竭评分及病死率显著相关[13]。

2 肾损伤分子1(KIM-1)

KIM-1是一种相对分子量38.7 kD的跨膜Ⅰ型糖蛋白。在正常肾脏组织中几乎不表达,高度表达于损伤的肾脏近曲小管上皮细胞,受损伤的细胞外域在基质金属蛋白酶作用下,裂解为可溶性的片段释放到细胞外,后排入尿液中,与肾脏损伤的严重程度呈正相关[14]。KIM-1有肾脏保护作用,其机制为:①通过吞噬坏死细胞和凋亡小体,参与肾脏间质的纤维化及肾小管上皮细胞早期损伤的修复等过程[15-16];②抑制KIM-1脱落,增加KIM-1数量,延长上皮细胞存活,清除坏死的肾小管上皮细胞碎片。

尿液中KIM-1水平是AKI患者预后的评价指标。AKI时,尿液中KIM-1的释放具有延迟效应,在2~3 d后才达到峰值。在KIM-1尚未达到峰值时,干预治疗可以减轻肾脏损伤的进展,有针对性地促进线粒体的生物学发生和治疗功能障碍的线粒体,也是修复受损肾上皮细胞的重要过程[17]。作为AKI标志物,肾脏缺血10 min时,尿液KIM-1水平显著上调,其不足之处在于尿液中KIM-1浓度升高无法准确区别AKI是处于损伤加重阶段还是恢复阶段,仅提示肾脏损伤或修复,故临床检测时应与其他标志物联合检测。

3 CysC

CysC是一种非糖基化蛋白,由有核细胞产生,分子量13.3 kD,由20个氨基酸组成。血液中CysC不受性别、年龄、炎性反应、营养状况等影响,恒定释放入血,可自由通过肾小球滤过,在肾小管几乎被全部重吸收,之后被全部降解,不再重复进入血液中[18],肾脏是唯一清除CysC的器官[19],健康人群尿液中CysC含量极少,且昼夜节律不影响尿液中CysC的排泄,在20℃下可保存48 h,稳定性好[20],便与检测。

CysC是一种较好的AKI早期鉴别指标,优于血清肌酐[21-22],血清CysC对诊断AKI的特异性为82%,敏感性为86%,AUC为0.87,预测AKI的比值比为27.7[23]。当肾小管发生轻微病变时,血液中CysC水平升高,是反映eGFR新的标志物[24]。

4 白细胞介素18(IL-18)

IL-18是一种相对分子量22 kD的促炎性细胞因子,肾脏损伤后,在半胱氨酸蛋白酶-1的介导下,IL-18数量增加,被半胱天冬氨酸蛋白酶-1激活后参与炎性反应,一方面,半胱天冬氨酸蛋白酶-1激活迅速表达的IL-18前体,参与肾脏的损伤和修复过程;另一方面,被激活的IL-18通过上调核转录因子通路,诱导单核细胞趋化因子-1、单核细胞趋化因子-2、一氧化氮合酶、肿瘤坏死因子α,促进中性粒细胞和巨噬细胞浸润肾间质。IL-18在AKI发生后6 h升高,12 h达到峰值,可高于正常25倍。

IL-18是较好的死亡预测因子,将尿液IL-18与KIM-1联合测定,可使AKI恶化或者死亡的AUC由0.89提高至0.93,将尿液IL-18与肌酐升高百分比联合,对AKI预后不良的AUC也可提高至0.93[25]。动物模型发现,AKI时,对IL-18进行靶向治疗可以减轻肾脏损伤,尿液中IL-18在肾脏损伤6 h后开始升高,12~18 h达峰值,但是在肾脏损伤6 h内进行抗IL-18治疗的效果还需要临床进一步验证。

5 N-乙酰-β-D氨基葡萄糖苷酶(NAG)

NAG是一种分子量为130 kD的溶酶体,正常肾小管上皮细胞会分泌少量的NAD,正常时尿液中含量很少,尿液NAG水平升高的机制为:①肾小球滤过膜功能受损时,蛋白滤过增加,在近曲肾小管重吸收激活溶酶体,使尿液中NAG含量增加[26];②肾脏发生病变时,肾脏实质细胞变性坏死,细胞内溶酶体释放进入尿液,使尿液中NAG含量增加。动态监测尿液NAG水平可反映病情变化的趋势及评估AKI转归[27]。尿液中NAG水平随机体尿液流率而变化,故NAG与尿液中肌酐的比值可以反映尿液NGA的排出率。不足之处在于尿液肌酐易受糖尿病、药物等因素影响,可能影响比值。

尿NAG水平与AKI患者肾脏替代治疗(RRT)需要性呈显著相关[27],预测RRT治疗需要性的AUC为0.81,敏感性为0.85。肾脏移植术后、心脏手术后、一些肾脏毒性药物等作用均可使尿液中NAG水平急剧升高,且尿液中NAD水平越高,患者需要RRT治疗比例越高,病死率也越高[28]。

6 人肝型脂肪酸结合蛋白(L-FABP)

L-FABP是一种相对分子量14 kD的肾脏保护蛋白,在肝脏产生,与细胞内和细胞膜的蛋白质有关,可与长链脂肪酸结合,调节脂质代谢[29],起抗氧化和促进新陈代谢的作用。应激状态下,游离脂肪酸(FFA)在肾脏近端小管内大量集聚,氧化及过氧化产物会加重肾小管损伤,L-FABP通过受损细胞膜而快速溢出。

L-FABP可较早发现肾小管损伤,预测血清肌酐還未升高的AKI[30],并预测预后[31],尿液L-FABP在早期AKI患者预后的ROC-AUC为0.79,尿液NGAL次之[32],在造影剂肾脏病、肾脏移植、心脏术后的AKI患者中具有重要作用[33],且尿液L-FABP是造影剂肾病的最佳预测因子[34]。不足之处是肝脏可大量表达L-FABP,故在肝移植或肝肾疾病合并肾损伤时,尿液中L-FABP检测的特异性和敏感性可能受到影响[35]。

7 胰岛素样生长因子结合蛋白-7(IGFBP-7)

IGFBP-7是一种由血管内皮细胞、平滑肌细胞、上皮细胞等分泌的分泌性糖蛋白,也称为肿瘤衍生黏附因子、前列环素刺激因子、血管调节素。属于胰岛素样生长因子结合蛋白家族的一员,相对分子量为29 kD,在血浆、尿液及肾脏、膀胱、肠道等组织中可被检测到。受损后的肾小管上皮细胞可分泌IGFBP-7,对肾脏的作用为:①上调P53和P21,减轻肾脏损伤;②IGFBP-7浓度升高可拮抗类胰岛素样生长因子1,从而改变肾脏血流动力学,使肾脏损伤加重。

IGFBP-7水平与AKI有密切的关系[36-37]。尿液IGFBP-7持续高表达直至肾损伤修复,这有可能是AKI早期应答机制的一种[38]。IGFBP-7升高可预测AKI患者2~3期(KDIGO标准)的发生(AUC为0.76)[39]。

AKI是一种常见的临床综合征,早期诊断和干预可改善患者预后。临床在应用新型AKI标志物时,首先,与肾功能指标联合检测;其次,特异性高与敏感性高的AKI标志物联合检测;最后,诊断价值高与预后预测价值高的AKI标志物联合检测,以便指导临床治疗和预测AKI的发生发展。随着临床研究和实践的不断深入,选择恰当的AKI标志物必将是未来评估肾脏损伤及预测预后的发展方向。

[參考文献]

[1] 龙盘,何丽洁.急性肾损伤生物学标记物的研究进[J].山东医药,2016,56(9):94-95.

[2] Khwaja A. KDIGO clinical practice guidelines for acute kidney injury [J]. Nephron Clin Pract,2012,120(4):c179-c184.

[3] 许戎.血肌酐与胱抑素C对慢性肾脏病患者诊断及预后评估的临床价值[J].中华检验医学杂志,2014,37(6):415-419.

[4] Cruz DN,Bagshaw SM,Maisel A,et al. Use of biomarkers to assessprognosis and guide management of patients with acute kidneyinjury [J]. Contrib Nephrol,2013,182:45-64.

[5] 王霞,王金泉.急性肾脏损伤生物标记物的作用机制及潜在治疗意义[J].医学研究生学报,2015,28(3):318-322.

[6] Matsui K,Kamijo-Ikemori A,Hara M,et al. Clinical significanceof tubular and podocyte biomarkers in acute kidney injury [J]. Clin Exp Nephrol,2011,15(2):220-225.

[7] 张雅丽,崔丽艳,张捷,等.中性粒细胞明胶酶相关脂质运载蛋白在急性肾损伤中的保护作用[J].检验医学,2015, 30(1):80-84.

[8] Uettwillergeiger DL,Vijayendran R,Kellum JA,et al. Analytical characteristics of a biomarker-based risk assessment test for acute kidney injury(AKI)[J]. Chim Acta,2016,455(1):93-98.

[9] Ferguson MA,Vaidya VS,Bonventre JV. Biomarkers of nep-hrotoxic acute kidney injury [J]. Toxicology,2008,245(3):182-193.

[10] Geus HR,Woo JG,Wang Y,et al. Urinary neutrophil gelatinase-associated lipocalin measured on admission to the intensive care unit accurately discriminates between sustained and transient acute kidney injury in adult critically ill patients [J]. Nephron Extra,2011,1(1):9-23.

[11] Eugeni AS,Antje E,Saban E,et al. Urinary neutrophil gelatinase-associated lipocalin distinguishes pre-renal from intrinsic renal failure and predicts outcomes [J]. Kidney Int,2011,80(4):405-414.

[12] Gharishvandi F,Kazerouni F,Ghanei E,et al. Comparative assessment of neutrophil gelatinase-associated lipocalin(NGAL)and cystatin C as early biomarkers for early detection of renal failure in patients with hypertension [J]. Iran Biomed J,2015,19(2):76-81.

[13] Hur M,Kim H,Lee S,et al. Diagnostic and prognostic utilities of multimarkers approach using procalcitonin,B-type natriuretic peptide,andneutrophil gelatinase-associated lipocalin in critically ill patients with suspected sepsis [J]. BMC Infect Dis,2014,14(1):224.

[14] Vanmassenhove J,Glorieux G,Lameire N,et al. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acutekidney injury:a prospective cohort study of patients with sepsis [J]. BMC Nephrol,2015,16(1):18.

[15] Nejat M,Pickering JM,Devarajan P,et al. Some biomarkers of acute kidney injury are incyeased in pre-renal acute injury [J]. Kidney Int,2012,81(12):1254-1262.

[16] 王劉伟,董吉,房豫东.肾损伤分子1对高糖诱导大鼠肾小管上皮细胞表达单核细胞趋化蛋白1和纤维连接蛋白的影响[J].中华肿瘤防治杂志,2014,30(1):48-52.

[17] Funk JA,Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury [J]. Am J Physiol Renal Physiol,2012,302(7):F853-F864.

[18] 张知,舒峤,廖跃华.尿液胱抑素C与B-N-乙酰氨基葡萄糖苷酶联合检测对肾小管损伤的诊断价值[J].国际检验医学杂志,2014,35(22):3053-3054.

[19] Uslu S,Efe B,Alata So,et al. Serum cystatin C and urinary enzymes as screening markers of renal dysfunction in diabetic pafients [J]. J Nephrol,2005,18(5):559-567.

[20] Noraddin FH,Flodin M,Fredricsson A,et al. Measurement of urinary cystain C with aparticle-enhanced turbidimetric immunoassay on Architect ci8200 [J]. J Clin Lab Anal,2012,26(5):358-364.

[21] Song S,Meye MR,Turk T,et al. Serum cystatin C in mouse models:a reliable and precise marker for renal function and superior to serum creatinine [J]. Nephrol Dial Transpl,2009,24(4):1157-1161.

[22] Jung YJ,Lee HR,Kwon OJ. Comparison of serum eystatin C and creatinine as a marker for early detection of decreasing glomemlar filtration rate in renal transplants [J]. J Korean Surg Soc,2012,83(2):69-74.

[23] Zhang Z,Lu B,Sheng X,et al. Cystatin C in prediction of acute kidney injury:a systemic review and meta-analysis [J]. Am J Kidney Dis,2011,58(3):356-365.

[24] Herget-Rosenthal S,Metzger J,Albalat A,et al. Proteomic biomarkers for the early detection of acute kidney injury [J]. Prilozi,2012,33(1):27-48.

[25] Arthur JM,Hill EG,Alge JL,et al. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery [J]. Kidney Int,2014,85(2):431-438.

[26] Vitushynska MV,Matiytsiv NP,Chernyk YI. Influence of tissue-specific superoxide dismutase gene expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability [J]. Cytol Genet,2015,49(2):95-101.

[27] Pipelzadeh MH,Jalali A,Dezfulian AR,et al. A forward to optimization of antivenom therapy:An in vivo study upon the effectiveness of the antivenom againstearly and delayed nephrotoxicity induced by the venom of the Iranian scorpion Hemiscorpius lepturus in rat [J]. Toxicon,2015,100:13-19.

[28] Liangos O,Perianayagam MC,Vaidya VS,et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure [J]. J Am Soc Nephrol,2007, 18(3):904-912.

[29] Manabe K,Kamihata H,Motohiro M,et al. Urinary liver-type fattyacid-binding protein level as a predictive biomarker of contrastinducedacute kidney injury [J]. Eur J Clin Invest,2012,42(5):557-563.

[30] Manabe K,Kamihata H,Motohiro M,et al. Urinary livertype fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury [J]. Eur J Clin Invest,2012,42(5):557-563.

[31] Yang J,Choi HM,Seo MY,et al. Urine liver-type fatty acid?binding protein predicts graft outcome up to 2 years after kidney transplantation [J]. Transplant Proc,2014,46(2):376-380.

[32] Parr SK,Clark AJ,Aihua B,et al. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury [J]. Kidney Int,2015,87(3):640-648.

[33] Manabe K,Kamihata H,Motohiro M,et al. Urinary liver-typefatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury [J]. Eur J Clin Invest,2012,42(5):557-563.

[34] Nakamura T,Sugaya T,Node K,et al. Urinary excretion of liver-type fatty acid-binding protein in contrast mediuminduced nephropathy [J]. Am J Kidney Dis,2006,47(3):439-444.

[35] 唐榮,敖翔,钟永,等.尿L-FABP与尿NGAL联合应用在儿童心脏术后急性肾损伤早期诊断中的价值[J].中国当代儿科杂志,2017,19(7):770-775.

[36] Peng ZY,Zhou F,Kellum JA. Cross-species validation of cell cycle arrest markers for acute kidney injury in the rat during sepsis [J]. Intensive Care Med Exp,2016,4(1):1-8.

[37] Aydo?覿 Du M,Boyacl N,Yüksel S. A promising marker in early diagnosis of septic acute kidney injury of critically ill patients:urine insulin like growth factor binding protein-7 [J]. Scand J Clin Lab Invest,2016,76(5):402-410.

[38] Kellum JA,Chawla LS. Cell-cycle arrest and acute kidney injury:the light and the dark sides [J]. Nephrol Dial Transplant,2016,31(1):16-22.

[39] Aregger F,Uehlinger DE,Witowski J,et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kideny injury [J]. Kindey Int,2014, 85(4):909-919.

猜你喜欢
肾小管肌酐尿液
没听错吧?用污泥和尿液制水泥
尿液检测可能会发现侵袭性前列腺癌
肌酐升高就是慢性肾衰吗
跟踪导练(三)
依帕司他对早期糖尿病肾病肾小管功能的影响初探
血肌酐水平对慢性心力衰竭患者预后判断的临床意义
IgA肾病患者血清胱抑素C对早期肾小管间质损害的预测作用
细胞因子在慢性肾缺血与肾小管-间质纤维化过程中的作用
肌酐-胱抑素C公式在糖尿病肾病超滤过检出中的作用
尿液NT-proBNP水平在慢性心力衰竭诊断中的意义