郭春秀,马俊梅*,何芳兰,王理德,李金辉,安富博,袁宏波,刘开琳
(1.甘肃省荒漠化与风沙灾害防治国家重点实验室,甘肃 武威 733000;2.甘肃民勤荒漠草地生态系统 国家野外观测研究站,甘肃 民勤733300;3.甘肃省治沙研究所,甘肃 兰州 730070)
石羊河是中国西北干旱区典型的内陆河,下游的民勤地区曾是水草肥美的天然绿洲[1],对我国生态安全屏障建设和生物多样保护具有重要作用[2]。然而,由于石羊河流域中游地区人口数量与经济规模的不断扩大,尤其是人工绿洲的扩张,下游地表水资源日趋减少,地下水严重超采,矿化度上升,自然植被受到了严重的干扰和破坏,土地沙漠化、盐渍化等一系列生态问题日趋加剧[3-4],致使民勤地区大面积草地荒漠化,从而形成以黑果枸杞(Lyciumruthenicum)、白刺(Nitrariatangutorum)等灌木为优势种或建群种的天然灌木林,对石羊河下游地区生态安全起着至关重要的作用[5]。
黑果枸杞是茄科(Solanaceae)枸杞属(Lycium)的耐盐、抗旱灌木,生长在盐碱土荒地、沙地或路旁[6]。黑果枸杞是石羊河下游灌木林重要的建群种之一,以其为优势种的灌木群落对维持石羊河下游荒漠生态系统具有重要作用。近年来,随着石羊河下游土地开发,加之黑果枸杞果实的经济价值攀升,人工采收果实使其种群受到严重破坏,也使生态屏障面临危机,因此,黑果枸杞这一植被资源亟待保护。目前,黑果枸杞的研究主要集中对其生长发育状况、果实营养等方面[7-9],而对其生长的群落特征及环境(土壤化学性质和生物学性质)鲜见报道[10-11]。基于此,本研究通过对石羊河下游不同类型荒漠草地黑果枸杞群落植被特征及土壤酶活性的研究,探讨不同类型荒漠草地土壤特性对黑果枸杞分布的影响,旨在对保护这一植被资源具有重要意义,为石羊河下游的生态保护和管理提供理论依据。
研究区选在甘肃省民勤县境内,阿拉善荒漠南部。地理位置介于103°02′-104°02′ E和38°05′-39°06′ N,海拔1000~1936 m。研究区常年干燥,少雨,蒸发强烈,寒冬长,夏热短,昼夜温差悬殊,日照充足,风多。年日照时数2832.1 h;年均风速 2.3 m·s-1;年平均气温7.4 ℃,极端最高气温达38.1 ℃,极端最低气温-28.8 ℃;年平均蒸发量2604.3 mm;年均降水量是113.2 mm,年内分布不均匀,73%的降水量集中在7-9月;土壤类型为灰棕漠土或石膏灰棕漠土[12]。研究区主要灌木植物有黑果枸杞、白刺、盐爪爪(Kalidiumfoliatum)、小果白刺(Nitrariasibirica)、红砂(Reamuriasoongoria)等,草本主要有田旋花(Convolvulusarvensis)、藜(Chenopodiumalbum)、白茎盐生草(Halogetonarachnoideus)、顶羽菊(Acroptilonrepens)、碱蓬(Suaedaglauca),骆驼蓬(Peganumharmala)、骆驼蒿(Peganumnigellastrum)、蒙古猪毛菜(Salsolaikonnikovii)等[13]。
根据荒漠草地土壤和植被特点[14],将研究区荒漠草地类型可分为覆沙荒漠草地、盐渍化荒漠草地、砾质荒漠草地、固定和半固定荒漠草地四大类,见文献[11]。
2016年7月,分别在4种不同类型荒漠草地中,选取黑果枸杞种群中心设置100 m×100 m样地,在每个样地内采用5点法设置5个10 m×10 m样方,调查不同类型荒漠草地黑果枸杞群落植物的种类、高度、冠幅、个体数以及调查样地的地理位置、海拔、土壤类型等(表1),草本植物调查则采用5个1 m×1 m小样方。根据荒漠生态调查常规调查方法[2]进行野外调查与室内计算。在各样地用土钻分别采集0~10 cm、10~20 cm、20~40 cm、40~60 cm土样,每个样方3次重复,将同一样地土样均匀混合后,再利用四分法将土样分两份封装好带回实验室,1份用于土壤化学性质和土壤酶活性的测定,另1份(4 ℃保存不超过24 h)用于土壤生物学特性的测定。
表1 不同类型荒漠草地黑果枸杞群落特征Table 1 The characteristics of L. ruthenicum community on different types of desert grassland
分别计算灌木层和草本层各植物种重要值,计算方法为:
IV=(RHI+RCO+RFE)/3[15]相对多度=(某种植物的多度/全部植物的多度总和)×100% 相对盖度=(某种植物的盖度/全部植物的总盖度)×100% 相对频度=(某种植物的频度/所有种的频度总和)×100%
式中:IV为重要值;RHI为相对高度;RCO为相对盖度;RFE为相对频度。
1.5.1土壤化学性质的测定 土壤有机碳采用重铬酸钾氧化外加热法,土壤全氮采用凯氏蒸馏法,土壤全磷、有效磷采用氢氧化钠溶液-钼锑抗比色法,土壤全钾、速效钾采用原子吸收分光光度法,土壤碱解氮采用扩散法[16]。
1.5.2土壤酶的测定 脲酶活性采用靛酚蓝比色法;磷酸酶活性采用磷酸苯二钠比色法;蔗糖酶活性采用3,5-二硝基水杨酸比色法;过氧化氢酶活性采用高锰酸钾滴定法[17]。
1.5.3土壤微生物量的测定 土壤微生物量采用氯仿熏蒸培养法测定[18-19]。
1)土壤微生物量碳(SMBC):采用K2Cr2O7-H2SO4外加热法测定。计算公式:
SMBC(mg·kg-1)=(Ec-Ec0)/kEc
2)土壤微生物量氮(SMBN):采用凯氏定氮法测定。计算公式为:
SMBN(mg·kg-1)=(En-En0)/kEn
3)土壤微生物量磷(SMBP):采用钼蓝比色法测定。计算公式为:
SMBP(mg·kg-1)=(Ep-Ep0)/kEp
式中:Ec、En和Ep为熏蒸土壤提取液中有机碳、全氮和磷含量;Ec0、En0和Ep0未熏蒸土壤提取液中有机碳、全氮和磷含量;kEc、kEn和kEp为校正系数,分别是0.38、0.54和0.40。
采用SPSS 19.0软件对不同类型荒漠草地土壤各指标进行单因素(One-Way ANOVA)分析、相关性分析,显著水平P<0.05,并用Excel 2010制图。
采用Whittaker的生长型系统来表示生活型,即用群落中植物茎的木质化程度来确定生活型[20],将群落中的植物分为灌木、多年生草本、一年生草本3种类型。从生活型上看(表2),灌木种类最多,为12种,隶属8科10属,一年生草本次之,为11种,隶属5科10属,多年生草本最少,为8种,隶属5科6属,分别占总种数的29.27%,26.83%,43.90%。在不同类型荒漠草地黑果枸杞群落中多年生草本与一年生草本物种数相近。灌木层与草本层植物数量差距较大,灌木层物种相对单一且数量较少,草本层物种相对丰富且数量较大。优势种群重要值研究表明,在覆沙草地和固定/半固定沙地中黑果枸杞为优势种,其重要值分别为58.93和38.05,在盐渍化草地和砾质荒漠草地中优势种分别为一年生草本碱蓬和狗尾草,其重要值分别为23.57和28.91。
通过对石羊河下游不同类型荒漠草地土壤化学性质测定分析表明(表3),各样地中速效钾含量相对较大,盐碱地土壤有机碳含量显著高于其他3样地(P<0.05),且盐碱地各土层土壤有机碳含量均达最高,其值分别为1.08%、0.98%、0.89%、0.972%。沙地、砾石和固定或半固定沙地各土层之间没有显著性差异(P>0.05),同一类型荒漠草地不同土层中,盐碱地土壤有机碳和有效磷含量随土层的加深呈逐渐减小的趋势,其他草地类型表现各异,但均具有明显的表聚效应。盐碱地土壤全氮、碱解氮、有效磷、全钾含量没有显著性差异(P>0.05),其含量分别在2.47~3.60 g·kg-1、8.59~16.60 mg·kg-1、0.76~1.10 mg·kg-1、0.54~0.84 mg·kg-1;其他草地类型土壤全氮、碱解氮、有效磷、全钾含量随土层变化规律不明显。
由图1可以看出,不同类型荒漠草地土壤微生物量碳、氮、磷含量总体表现为:盐碱地>砾石>沙地>固定半固定沙地。其值变化范围分别在110.28~439.34 mg·kg-1;23.81~99.05 mg·kg-1;5.12~20.45 mg·kg-1。同一类型荒漠草地中微生物生物量碳、氮、磷含量均随土层的加深而逐渐减小,表聚现象明显。同一土层不同类型荒漠草地,与沙地相比,0~10 cm土层,盐碱地土壤微生物量碳显著高于沙地(P<0.05),砾石和固定半固定沙地无显著差异(P<0.05);40~60 cm土层,固定半固定沙地土壤微生物量碳、氮含量均显著低于沙地(P<0.05);0~10 cm土层,固定半固定沙地土壤微生物量磷含量显著低于沙地(P<0.05),其他各土层间土壤微生物量磷含量差异不显著(P>0.05)。
由图2可知,不同类型荒漠草地土壤酶变化程度各异。同一土层不同类型荒漠草地,与沙地相比,盐碱地各土层蔗糖酶显著增大(P<0.05),砾石和固定半固定沙地差异不显著(P>0.05);盐碱地、砾石和固定半固定沙地土壤过氧化氢酶显著(P<0.05)高于沙地;固定半固定沙地土壤脲酶(10~20 cm)显著(P<0.05)低于其他3类草地;盐碱地和砾石荒漠草地(0~10 cm)土壤磷酸酶显著(P<0.05)高于沙和固定半固定沙地;盐碱地中4种酶活性均为最大,其值分别为:0.90、0.70、2.08、1.38 mg·g-1·24 h-1。不同类型草地土壤酶活性均随着土层深度的加深而呈逐渐减小的趋势。
表2 不同类型荒漠草地黑果枸杞群落的物种重要值Table 2 The important value of L. ruthenicum community species on different types of desert grassland
图1 不同类型荒漠草地土壤微生物生物量Fig.1 Soil microbial biomass under different types of desert grassland 1:沙地Sandy land; 2:盐碱地Salinization desert; 3:砾石Gravel land; 4:固定和半固定沙地Fixed or semi-fixed sand. 不同小写字母表示相同土层不同土壤类型差异显著(P<0.05),下同。 Values with different little letters show different types of soil in the same soil depth at 0.05 level, the same below.
由表4可知,不同类型荒漠草地土壤化学性质与微生物学特性呈不同程度的相关关系。土壤有机质与微生物量碳、微生物量氮和磷酸酶、蔗糖酶呈极显著正相关(P<0.01),与脲酶和过氧化氢酶呈显著正相关(P<0.05);土壤全磷与脲酶、磷酸酶、蔗糖酶呈极显著正相关(P<0.01),与微生物量氮呈显著正相关(P<0.05)。土壤全钾与微生物量氮呈正相关,与其余指标呈负相关。土壤碱解氮与过氧化氢酶呈正相关,与其余指标呈负相关。土壤有效磷与微生物量磷、脲酶、磷酸酶和蔗糖酶呈正相关,与其余指标呈负相关。土壤速效钾与微生物量碳和磷酸酶呈极显著正相关(P<0.01)。
植物群落科、属、种结构不仅能反应植物群落特征,同时也能体现出植物群落所在生境条件[21]。本研究发现,研究区4样地中共出现植物种31种,其中灌木植物12种,多年生草本8种, 一年生草本11种, 分属9科27属,物种构成表现为多数种属于少数科、少数种属于多数科,并且很多种为单属单科, 这种结构和党荣理等[22]、何芳兰等[23]研究的关于西北荒漠地区植物区系[22]及石羊河下游盐渍化退耕地植被特征[23]相一致。在石羊河下游不同类型荒漠草地黑果枸杞群落中,因受环境条件的限制,其物种组成简单,无乔木层和高大灌木层, 矮小的灌木层占有绝对优势[24]。
表4 不同类型荒漠草地土壤化学性质与微生物量、土壤酶的相关性分析Table 4 Correlation of soil chemical properties with soil microbial biomass and soil enzyme activities under different types of desert grassland
注:**在0.01水平上显著相关;*在0.05水平上显著相关。
Note:**indicate very significant correlation (P<0.01);*indicate significant correlation (P<0.05).
图2 不同类型荒漠草地土壤酶活性Fig.2 Soil enzyme activities under different types of desert grassland
从黑果枸杞不同群落物种组成来看(表2),黑果枸杞在不同群落中优势地位明显,对群落的结构、生态系统功能及稳定性具有重要作用。在盐渍化草地和砾质荒漠草地中优势种为一年生草本,黑果枸杞为亚优势种,其原因是因为随着雨季的到来,一年生草本大量萌发,逐渐占据群落的主要地位并发展为群落的优势种群。所以在研究植被的重要值时,应排除雨季型一年生植物的影响[15]。
土壤是生态系统中许多生态过程的载体和植物生长的基质[25],土壤养分是气候、地形、植被用土壤等自然条件的总体反映,也是土壤的重要组成部分[26]。不同类型荒漠草地相同土层中,盐碱地土壤有机碳含量具有明显的表聚效应,且盐碱地中土壤有机碳含量随土层的加深呈逐渐减小的趋势,这可能是由于试验样地选取的是盐碱退耕地,植物枯枝落叶大量归还土壤,首先进入土壤表层,有利于土壤养分的积累[27],使表层土壤有机碳含量增加,表层养分丰富[28],这一结论与许冬梅等[29]、舒向阳等[30]研究结果一致。同一类型荒漠草地不同土层,土壤有效磷(盐碱地)、土壤全钾(固定半固定沙地)、土壤全磷(盐碱地和砾石)含量具有明显的表聚效应,可能由于所选试验地的植被主要是由深根系的灌木为主,对深层土壤养分消耗较大,而对表层土壤养分消耗较小,加上表层土壤不断有大量的枯枝落叶归还,增加了有机碳含量,从而补给了土壤中的氮素,出现明显的表聚效应[31],这与赵栋等[32]对灌丛土壤理化性质研究结果相似。
土壤微生物是草地生态系统的重要组成部分,在“土壤-土壤微生物-植物”这一生态系统中扮演着重要角色,对土壤养分、土壤结构、土壤稳定性和植被生态恢复产生重要影响[33]。土壤微生物量反映土壤碳、氮、磷等的含量,同时土壤理化性质与土壤微生物量、组成等特征密切相关[34]。本研究结果表明:不同类型荒漠草地土壤微生物量总体表现为:盐碱地>沙地>固定半固定沙地>砾石。与沙地相比,同一土层不同类型荒漠草地土壤微生物量变化较土壤化学性质敏感,这与Singh等[35]研究结论一致。同一类型荒漠草地不同土层,随着土层深度的加深,土壤微生物量含量逐渐减少,这可能是采样时间正值土壤微生物活跃的时期,加上表层土壤表层聚集大量枯枝落叶,使土壤有机质丰富,且该层水热和通气状况良好[36],为微生物生长和繁殖提供适宜的环境,促进了微生物的生物活性。
土壤酶是土壤中活跃的有机成分之一,在土壤养分循环以及植物生长所需养分的供给过程中起到重要的作用[37-38]。本研究结果表明:与沙地相比,盐碱地各土层蔗糖酶显著增大(P<0.05),盐碱地、砾石和固定半固定沙地土壤过氧化氢酶显著(P<0.05)高于沙地;盐碱地和砾石荒漠草地(0~10 cm)土壤磷酸酶显著(P<0.05)高于沙和固定半固定沙地;盐碱地中4种酶活性均为最大,这可能是因为该实验区盐碱退耕地有机碳含量和其他土壤养分相对较高,加上土壤微生物活动旺盛,土壤脲酶、磷酸酶活性较大,同时也可能与盐碱地退耕之前种植的作物有关,王理德[31]在研究民勤退耕区次生草地土壤酶活性得到相似结论。同一类型荒漠草地不同土层,土壤酶活性随着土层深度的加深逐渐减小,可能是因为表层土壤微生物活跃,随着土层的加深,抑制了土壤微生物活动,抑制土壤微生物代谢[39],这与蒋永梅等[40]研究结果相似。但也出现深层土壤部分土壤酶活性较高,这可能由于试验区域植被主要以深根系灌木植物为主,植物处于生长旺盛时期(7月),根系生物量和根系分泌物增加,使土壤养分不断积累,为一些土壤微生物的生长提供生长环境,使其代谢较活跃[41]。
相关性结果显示,不同类型荒漠草地土壤化学性质与微生物学特性间具有密切的相关性。土壤有机质与微生物量碳、微生物量氮和磷酸酶、蔗糖酶呈极显著正相关(P<0.01),与脲酶和过氧化氢酶呈显著正相关(P<0.05);土壤全磷与脲酶、磷酸酶、蔗糖酶呈极显著正相关(P<0.01),与微生物量氮呈显著正相关(P<0.05)。土壤速效钾与微生物量碳和磷酸酶呈极显著正相关(P<0.01)。土壤微生物量、土壤酶影响土壤有机质变化,同时也影响全磷,可能是由于土壤养分是酶促反应的底物和来源,在反应过程中对参与反应的营养元素有影响[42]。
石羊河下游不同类型荒漠草地黑果枸杞群落物种组成明显表现出多数种属于少数科,少数种属于多数科的特征,并且很多种为单属单科。因受环境条件的限制,黑果枸杞群落物种组成简单,无乔木层和高大灌木层,矮小的灌木层占有绝对优势,黑果枸杞在不同群落中优势地位明显,对群落的结构、生态系统功能及稳定性具有重要作用。土壤养分含量总体偏低,且含量不均,总体表现为“富K、富N、贫P,有机质含量低”的特征。盐碱地中土壤有机碳、土壤有效磷、全磷、土壤微生物量及酶活性等均具有明显的表聚效应,所以盐碱地为黑果枸杞生长提供良好的生长环境,对保护黑果枸杞种群具有重要意义。