王莹
摘要:针对引力搜索算法求解精度不高,易于早熟等缺点,提出了一种改进的引力搜索算法。为了平衡算法的开发与探索能力,我们引入两个变异算子:一个算子增强算法的开发能力;另一算子增强算法的探索能力。最后把改进算法应用到典型测试题中,数值结果表明,算法是可行的,有效的。
Abstract: This paper proposes an improved gravitational search algorithm aiming at the shortcomings of the gravitational search algorithm, such as low precision and easy prematurity. In order to balance the development and exploration capabilities of the algorithm, we introduce two mutation operators: one operator enhances the ability to develop the algorithm; the other operator enhances the ability to explore the algorithm. Finally, the improved algorithm is applied to typical test questions. Numerical results show that the algorithm is feasible and effective.
关键词:引力搜索算法;算法改进;变异算子
Key words: gravity search algorithm;algorithm improvement;mutation operator
中图分类号:TP18 文献标识码:A 文章编号:1006-4311(2018)21-0234-03
0 引言
引力搜索算法(Gravitational Search Algorithm,GSA)是Esmat Rashedi等人受万有引力定律和牛顿运动学第二定律启发在2009年提出的一种新兴的启发式优化算法。自从引力搜索算法被提出以来,它已被广泛地应用于实际生活中,如神经网络训练[1],软件工程[2],图像处理[3]和动力工程[4]等诸多问题,引力搜索算法显然已成为解决优化问题的一种十分重要的算法。一些学者提出许多改进的引力搜索算法[5]-[7]。为了平衡引力搜索算法的开发与探索能力,本文提出一种改进的引力搜索算法。在该算法中,引入两个变异算子,一个算子具有开发能力另一算子具有探索能力。从而克服引力搜索算法收敛快,易于早熟的缺点。
1 引力搜索算法
3 数值实验
为了评价算法的性能,我们选取5个测试函数分别是Sphere(F1),Schwefel's2.22(F2),Schwefel's2.21(F3),Generalized Rastrigin(F4),Ackley(F5)针对每个问题两个算法在MATLB 2007环境下独立运行30次,所得结果见表1。两种算法的参数设置如下:β=20,G0=100,最大迭代步数tmax=1000。从表1看出IOGSA在F1和F4上优于GSA,所以IOGSA算法是可行且有效的。
4 结论
引力搜索算法虽然有很强的全局搜索能力,但是在计算的后期却缺乏开发能力。本论文的总体目标就是有效地平衡了算法的探索能力和开发能力得到更加有效的改进的引力搜索算法IOGSA。
参考文献:
[1]Beatriz González a, Fevrier Valdez a, Patricia Melina,*, German Prado-Arechiga b, Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition, Applied Soft Computing, Applied Soft Computing,2015,37,245-254.
[2]Palanikkumar D., ANBUSELVAN P. and RITHU B. A Gravitational Search Algorithm for effective Web Service Selection for Composition with enhanced QoS in SOA, International Journal of Computer Applications [J]. 2012, 42(8): 12-15.
[3]Zhao W.Adaptive Image Enhancement Based on Gravitational Search Algorithm [J].Procedia Engineering, 2011,15:3288-3292.
[4]Mood, S. E., E. Rasshedi, M. M. Javidi. New Functions for Mass Caculation in Gravitational Search Algorithm. - Journal of Computing and Security, 2016,2.
[5]張维平,任雪飞,李国强,等.改进的万有引力搜索算法在函数优化中的应用[J].计算机应用,2013,33(5):1317-1320.
[6]Rashedi E., Nezamabadi-pour H., Saryazdi S., BGSA: binary gravitational search algorithm, Natural Computing,2009,9,727-745.
[7] Li P., Duan H. B., Path planning of unmanned aerial vehicle based on improved gravitational search algorithm[J]. Science China Technological Sciences, 2012, 55, 2712-2719.