蔡贵榕
【摘 要】目的:探讨超声在小儿腹部肿瘤中的诊断价值和临床意义。方法:选取2016.10~2017.10来我院就诊的,经手术病理结果证实的80例小儿腹部肿瘤患者为研究对象,均给予腹部超声检查,回顾性分析其超声诊断结果,并于病理结果进行对照。结果:小儿腹部肿瘤中以肾母细胞瘤、卵巢畸胎瘤、神经母细胞瘤、腹膜后畸胎瘤、肝母细胞瘤、肠系膜囊肿、肠重复畸形等常见,其中62.50%为恶性,通过超声诊断后,其肿瘤形状、边界、回声、血流各有其特征性改变,超声诊断其物理特性准确性达100%,病理特性准确性达68.75%。结论:超声在小儿腹部肿瘤中的诊断中,操作简单,准确性较高,值得临床推广应用。
【关键词】超声;小儿;腹部肿瘤;诊断
The research value and clinical importance of ultrasound diagnosis of abdominal tumors in children
Abstract Objective: To explore the diagnostic value and clinical significance of ultrasound in children's abdominal tumors. Methods: 80 children with abdominal tumors confirmed by surgery and pathology from 2016.10 to 2017.10 who came to our hospital were selected as study subjects. Abdominal ultrasonography was performed. The results of ultrasound diagnosis were retrospectively analyzed and compared with pathological results.Results: Nephroblastoma, ovarian teratoma, neuroblastoma, retroperitoneal teratoma, hepatoblastoma, mesenteric cyst, and intestinal duplication were common in children with abdominal tumors, among them, 62.50% were malignant. After the diagnosis by ultrasound, the shape, boundary, echo, and blood flow of the tumors had their own characteristic changes. The accuracy of the ultrasound diagnosis was 100% and the accuracy of the pathological features was 68.75%.Conclusion: In the diagnosis of pediatric abdominal tumors, ultrasound is simple and accurate. It is worthy of clinical application.
Key words: ultrasound; children; abdominal tumors; diagnosis
【中图分类号】R564 【文献标识码】A 【文章编号】1005-0019(2018)04-00-01
肿瘤严重威胁人类生命健康,已成为目前临床导致患者死亡最常见原因之一[1]。随着社会的发展,环境的污染,饮食结构的改变,小儿肿瘤的发病率也越来越高[2,3],在我国,肿瘤是导致小儿死亡的第三位病因[4],其中,最常见的是小儿腹部肿瘤[5],涉及到消化、淋巴、泌尿、生殖等多系统,临床上多表现为腹部肿块,发现时肿瘤体积多已较大,因此,早期诊疗尤为重要,而早期诊断是早期治疗的关键[6]。目前,临床多采用影像学的检查手段,其中超声一种简单、安全、常用的一种检查方式,可以为其诊断提供丰富的临床信息。本研究旨在探讨超声在小儿腹部肿瘤中的诊断价值和临床意义,现报道如下:
1 资料和方法
1.1 一般资料
选取2016.10~2017.10来我院就诊的,经手术病理结果证实的80例小儿腹部肿瘤患者为研究对象,其中,男41例,女39例;年龄15d~12岁,平均年龄为(2.9±0.3)岁。
1.2 方法
所有入选患者均给予腹部超声检查。主要包括二维超声和彩色多普勒超声,具体操作方法如下,二维超声:患儿需空腹6h,婴儿可少量进食乳汁后检查,若胃肠积气干扰显像应先进行肠道准备;若检查盆腔内组织器官,需先适度充盈膀胱;若患儿不合作,可先用10%水合氯醛灌肠镇静。检查时取仰卧位,必要时可调整为侧卧位及俯卧位。首先确定有无肿块、肿块的来源,观察肿块的大小、位置、形态、边缘、轮廓、包膜、与周围组织之间的关系以及内部回声,确定其质,分析其良恶性质,注意有无浸润和转移。彩色多普勒超声:肿块内部有无血流分布,若有需观察其丰富程度,观察肿块周围的血流分布,明确肿块与周围管的关系,明确肿块的血流情况。
2 结果
2.1 小儿腹部肿瘤的病理类型
入选的80例患者中,主要以肾母细胞瘤、卵巢畸胎瘤、神经母细胞瘤、腹膜后畸胎瘤、肝母细胞瘤、肠系膜囊肿、肠重复畸形等常见,其中良性肿瘤占37.50%,恶性肿瘤占62.50%,结果见表1。
2.2 小儿腹部腫瘤的超声表现 小儿腹部中2.50%肿瘤为圆形,50.00%为椭圆形,47.50%为不规则形;边界情况:61.25%有包膜的,62.50%边界清,37.50%边界不清;内部回声情况:16.25%为实性低回声,2.50%为实性等回声,11.25%为实性强回声,27.50%为实性混合回声,16.25%为囊性混合回声,40.00%为囊性无回声;小儿腹部肿瘤血流分布情况:26.25%为内部无血流,17.50%为内部稀疏血流,41.25%为内部丰富血流,33.75%为周边无血流,26.25%为周边有血流
2.3 超聲诊断与病理结果对比情况
超声诊断肿物物理特性的准确率为100.00%,诊断肿物病理特性的准确率为68.75%
讨论
小儿腹部肿瘤是小儿外科疾病中的常见疾病,如肾母细胞瘤[7-9]、畸胎瘤[9]、肠系膜囊肿、大网膜囊肿、卵巢囊肿[10]、肝母细胞瘤、神经母细胞瘤等,分为实性肿瘤和囊性肿瘤,发现时瘤体往往已近较大,且与周围组织紧密粘连,治疗较困难,严重威胁患儿的生命健康[11,12],因此,在肿瘤早期发现、早期治疗,对于提高其临床疗效具有重要意义[13]。目前,小儿腹部肿瘤常用的诊断方法为X线、超声、CT[14]、以及MRI[15,16]。腹部X线检查成本较低,能及时诊断疾病,但由于腹腔内组织器官复杂,缺乏自然对比,分辨率和灵敏度都较低,使其临床诊断受到很大限制。CT 灵敏度较高,对能敏感地检测出小的病灶,但若病变组织与正常组织密度相近,则对比度低,且CT也有辐射,若短期内多次检查,对患儿影响较大。MRI能详细反映组织学特征,空间分辨率较高,但检查时间较长,在一些疾病的定性诊断上仍存在困难[17]。相比之下,超声检查操作简单、费用较低,对大部分腹腔肿瘤能进行定性,为小儿腹腔脏器病变的首选,但腹腔内环境也会影响诊断。临床小儿腹部肿瘤诊断过程中,应根据患者的自身状况,选择适宜的检查方法,可结合多种检查方法,提高诊断的灵敏性、准确性、可靠性。
目前临床常用的超声检查方法为二维超声和彩色多普勒超声检查[18]。二维超声检查可通过测定肿块的大小以及回声,判断肿块的来源,并观察肿块与周围组织的关系,判定其性质,对于临床鉴别小儿腹部肿瘤的良、恶性具有一定的意义。且检查迅速、方便、安全、无创,能进行实时动态观察,且可重复性较强。彩色多普勒超声是在常规二维超声基础上通过彩色多普勒的方法对血流进行显示,更直观、动态地观察血流的流向、分布。一般来讲,良性肿瘤血液供较少,恶性肿瘤血供丰富,可通过彩色多普勒观察肿瘤内部的血供情况,而初步鉴定肿瘤的良、恶性;也可通过观察肿瘤周围的血供情况,了解其是否有血管的浸润,对临床的治疗具有指导意义。肾母细胞瘤超声检测结果:多为圆形或椭圆形,表面光滑,与周围肾组织境分界明显,内部可见液化和钙化回声影;神经母细胞瘤超声检测结果:瘤体较大,边缘不整,位于腹膜后,瘤体内部多呈非均质性回声,并可见多个强回声斑块;腹膜后畸胎瘤超声检测结果:呈分叶状或不规则型,与周围组织分界不清,瘤体内部一般为混合性回声;卵巢畸胎瘤超声检测结果:瘤体内部多呈囊性或囊实性回声;肠系膜囊肿超声检测结果:形态多不规则,腔内透声差;肠重复畸形超声检测结果:单房囊性肿物,囊壁具有“强一弱一强”的回声特征。
综上所述,超声检查在确定小儿腹部肿瘤的良恶性、定位、定性上具有一定的意义,能指导临床治疗,值得推广。
参考文献
Barrera M, Atenafu EG, Sung L, et al. A randomized control intervention trial to improve social skills and quality of life in pediatric brain tumor survivors[J]. Psychooncology, 2018, 27(1): 91-98.
Vermeulen JF, Van Hecke W, Adriaansen EJM, et al. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma[J]. Oncoimmunology, 2018, 7(3): e1398877.
Hoskinson KR, Wolfe KR, Yeates KO, et al. Predicting changes in adaptive functioning and behavioral adjustment following treatment for a pediatric brain tumor: A report from the Brain Radiation Investigative Study Consortium[J]. Psychooncology, 2018, 27(1): 178-186.
Vaarwerk B, van der Lee JH, Breunis WB, et al. Prognostic relevance of early radiologic response to induction chemotherapy in pediatric rhabdomyosarcoma: A report from the International Society of Pediatric Oncology Malignant Mesenchymal Tumor 95 study[J]. Cancer, 2018, 124(5): 1016-1024.
Joseph JM, Farron AM, Renella R, et al. Can smaller-scale comprehensive cancer centers provide outstanding care in abdominal and thoracic pediatric solid tumor surgery? Results of a 14-year retrospective single-center analysis[J]. Ann Surg Oncol, 2014, 21(5): 1726-31.
de Ruiter MA, Grootenhuis MA, van Mourik R, et al. Timed performance weaknesses on computerized tasks in pediatric brain tumor survivors: A comparison with sibling controls[J]. Child Neuropsychol, 2017, 23(2): 208-227.
Danielzik T, Koldehoff M, Buttkereit U, et al. Sensitive detection of rare antigen-specific T cells directed against Wilms' tumor 1 by FluoroSpot assay[J]. Leuk Lymphoma, 2018, 59(2): 490-492.
Hao Y, Cheng Y, Wu Q, et al. Combined usage of Wilms' tumor gene quantitative analysis and multiparameter flow cytometry for minimal residual disease monitoring of acute myeloid leukemia patients after allogeneic hematopoietic stem cells transplantation[J]. Exp Ther Med, 2018, 15(2): 1403-1409.
Mitra S, Sarma MK,Das AK. Curious case of a black pleural effusion: Mediastinal teratoma presenting as massive pleural effusion[J]. Lung India, 2018, 35(1): 87-89.
Childress KJ, Patil NM, Muscal JA, et al. Borderline Ovarian Tumor in the Pediatric and Adolescent Population: A Case Series and Literature Review[J]. J Pediatr Adolesc Gynecol, 2018, 31(1): 48-54.
Saab R, Merabi Z, Abboud MR, et al. Collaborative Pediatric Bone Tumor Program to Improve Access to Specialized Care: An Initiative by the Lebanese Children's Oncology Group[J]. J Glob Oncol, 2017, 3(1): 23-30.
Riggs L, Piscione J, Laughlin S, et al. Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training[J]. Neuro Oncol, 2017, 19(3): 440-450.
Olbjorn C, Cvancarova Smastuen M, Thiis-Evensen E, et al. Serological markers in diagnosis of pediatric inflammatory bowel disease and as predictors for early tumor necrosis factor blocker therapy[J]. Scand J Gastroenterol, 2017, 52(4): 414-419.
Kara PO, Koc ZP, Citak EC, et al. Rare Endobronchial Inflammatory Myofibroblastic Tumor in Pediatric Patient Detected on PET/CT Imaging[J]. Clin Nucl Med, 2017, 42(9): e407-e408.
Wu CC, Guo WY, Chang FC, et al. MRI features of pediatric intracranial germ cell tumor subtypes[J]. J Neurooncol, 2017, 134(1): 221-230.
Neubauer H, Li M, Muller VR, et al. Diagnostic Value of Diffusion-Weighted MRI for Tumor Characterization, Differentiation and Monitoring in Pediatric Patients with Neuroblastic Tumors[J]. Rofo, 2017, 189(7): 640-650.
Vajapeyam S, Stamoulis C, Ricci K, et al. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors[J]. AJNR Am J Neuroradiol, 2017, 38(1): 170-175.
Smith H, Taplin A, Syed S, et al. Correlation between intraoperative ultrasound and postoperative MRI in pediatric tumor surgery[J]. J Neurosurg Pediatr, 2016, 18(5): 578-584.