下肢动脉硬化闭塞症治疗中载药支架的应用现状

2018-07-10 00:50卫任郭伟
中国普通外科杂志 2018年6期
关键词:膝下莫司紫杉醇

卫任,郭伟

(中国人民解放军总医院 血管外科,北京 100853)

郭伟

下肢动脉硬化闭塞症( lower extr emity atheroscl erotic occlusive disease ,LEASOD)已经成为影响人类健康的高发病之一。据估计,全球约有2亿的人群罹患此病,而且该数字仍在逐年上升[1]。该病最直接的风险在于导致下肢跛行、静息痛,甚至截肢。相应的治疗也主要围绕如何重建病变段动脉的血流而展开。

上世纪后半叶,腔内治疗的兴起为LEASOD的治疗提供了新的微创有效的方法。近20年来,该技术迅猛发展,已成为重建下肢血运的首选方法[2]。然而,腔内术后短期内血管再狭窄的问题也日益凸显,如股腘动脉病变应用金属裸支架(bare mental stent,BMS)1年的再狭窄率达32%~46%,而膝下动脉处的再狭窄率更高[3-4]。

导致支架远期再狭窄的主要原因是动脉内膜增生[5]。为此,支架被负载上能够抑制内膜增生的药物,制成载药支架(drug eluting stent,DES)。常用的负载药物有紫杉醇和莫司类药物两大类。前者能够抑制细胞内微管的合成及DNA解聚蛋白酶的激活,后者则通过阻断维持细胞周期的多条信号通路来发挥作用[6-7]。两者孰优孰劣,目前尚未有实验证实。

对于髂动脉病变,应用BMS已可以获得不错的结果[8]。因此临床中DES更多地被用于处理股腘动脉及膝 下动脉病变。本文即对DES在这两处动脉的应用现状分别阐述。

1 DES治疗股腘动脉病变

用于股腘动脉处的DES最初均为BMS直接负载药物制成,且药物浓度主要依据于冠脉DCB,之后逐渐有了支架的改进和药物浓度以及载药方式的调整。相关的临床试验也多为单臂设计,以检验支架的有效性和安全性。

SIROCCO试验率先检验了SMART DES(Cordis)治疗股浅动脉病变的疗效。其所负载药物为西罗莫司。该试验入组长度≤20 cm的股腘病变,并以SMART裸支架作对照。I期试验随访6个月,结果显示两组的支架再狭窄率均为0[9]。II期试验扩大了病例数,并延长随访时间至2年,结果显示DES在再狭窄率、靶病变血运重建(target leisure revascularization,TLR)率,以及踝肱指数、跛行距离改善方面均未有更好的表现[10]。该试验也暴露了前期DES设计的不足,如负载药物浓度低、药物释放时间较短(不足7 d),以及支架断裂率高等问题。

有鉴于此,Dynalink支架(Abbott公司)负载了高浓度依维莫司,且以乙烯醇作聚合媒介,药物持续释放可达3个月之久。STRIDES试验检验了这款支架的效果。该试验为前瞻性单臂设计,入组100例股腘动脉病变患者,平均病变长度(9.0±4.3)cm。1年的随访结果显示此款DES一期通畅率为(68±4.6)%[11]。而相对于之前同款非载药支架治疗同类型病变1年(63±7)%的通畅率[12],其优势并不突出。

COOK 公司则对金属支架进行了改进,将Zilver PTX支架表面预刻了诸多沟槽,紫杉醇负载其中。相应的Zilver PTX随机试验入组了474例患者,平均病变段长度(6.5±4.0)cm。随访1、5年的结果显示DES组一期通畅率分别为83.1%、66.4%,均显著高于(普通球囊±BMS)组。而且,在免于TLR率、临床获益率方面,前者亦优于后者[13-14]。基于此款支架,Miki等[15]报道了支架规格对管腔预后的影响。其结果显示,股浅动脉处DES选择8 mm直径较6 mm,在术后6个月的随访中有更大的管腔面积,由此指出DES支架宜选择大直径规格[15]。

作为新一代的DES,Eluvia DES(Boston Scientific)同样负载了紫杉醇,所不同的是其添加了一种含氟乙烯类聚合物涂层,使紫杉醇可持续释放超过9个月之久。同时,这款支架在设计上采取两头闭环、中部开环式设计,以兼顾股浅动脉对支架柔顺性和径向支撑力的要求[16]。MAJESTIC试验对其效果进行了验证,入组57例患者,平均病变长度(70.8±28.1)mm。1年的随访结果显示其一期通畅率可达96%,TLR率为4%,且无支架断裂发生[17]。这是迄今为止DES通畅率最高的报道。受此鼓舞,IMPERIAL试验将通过全球多中心随机对照设计,对比Eluvia和Zilver PTX这两款DES的效果[18]。目前该试验尚在入组阶段。

需指出的是,上述临床试验所选择的病例均为TASCA/B级病变,而实际临床中往往面临的是更为复杂的病变。Lida等[19]报道了Zilver PTX在真实世界应用的结果。其观察了831例股腘病变的病例,平均病变长度(17±10)cm,随访1年的结果显示再狭窄率达37%,重大肢体不良事件(包括截肢及二次手术)发生率及支架内血栓发生率分别为22%和2%。由此可见DES对长段病变(TASC C/D)的效果也不容乐观。

可 降 解 支 架 ( bioresorbable vascular scaffold,BVS)的出现又将掀开LEASOD治疗新的革命。BVS在一定程度上避免了支架对管壁的持续性机械刺激,减少了管壁炎性反应及内膜增生效应[20]。在这类支架上负载抗内膜增生药物,理论上讲会有更好的抗动脉狭窄效果。ESPRIT BVS(Abb ott)即负载了依维莫司,并率先应用于外周血管。相应的ESPRITEⅠ试验纳入35例髂股动脉狭窄病例,平均病变长度(35.7±16.0)mm。其1年及2年的再狭窄率分别为12.1%、16.1%,二次干预率分别为8.8%和11.8%[21]。该结果相对于Eluvia和Zilver PTX的DES并未有显著提高。这可能与支架自身材料有一定关系。Werner等[22]报道同材料的非载药BVS1年的再狭窄率高达67.9%。因此,外周动脉领域载药BVS时代的兴起尚需支架材料的更迭或改进。

2 DES在膝下动脉处应用

普通球囊或BMS在膝下动脉处仍面临相当高的再狭窄率及截肢率,因此该段血管对远期通畅性的追求更为迫切。膝下动脉的直径与冠脉基本匹配,诸多冠脉DES即被直接用于膝下动脉。也得益于DES在冠脉领域的充分发展,用于膝下动脉的DES相关临床试验已不再过多关注产品有效性和安全性问题,而重在关注其相对于其他技术的优劣性问题。

ACHILLES试验对比了Cypher select DES(Cordis)与普通球囊扩张(percutaneous transluminal angioplasty,PTA)治疗膝下病变的效果。Cypher DES负载西罗莫司。该试验以多中心随机对照设计,纳入200例Rutherford 3~5级的患者,平均病变长度为26.8 mm。1年随访结果得出DES组再狭窄率明显低于PTA组(24.4% vs. 41.9%,P<0.05),但在改善症状、降低临床终点(如TLR、截肢)发生率方面,两组并无显著差异[23]。

PADI试验则选择负载紫杉醇的TAXUS DES(Boston Scientific),与PTA±BMS进行对比,得出不同的结果。该试验入组140例患者,DES组平均病变长度(23.1±21.8)mm。6个月的随访结果显示DES的通畅率高于(PTA±BMS)(48.0% vs.35.1%,P<0.01) ,且截肢发生率更低(9.8% vs.20.5%,P=0.10),而且这一优势一直持续到术后2年,甚至5年之久[24-25]。

DESTINY试验对DES与BMS的效果进行了对比。其所用DES为携载依维莫司的Xience V(Abbott)。DES组平均病变长度仅为(18.9±10.0)mm。12个月的随访结果显示DES有更好的一期通畅率(85% vs. 54%,P=0.0 001)及免于TLR率(91% vs. 66%,P=0.001)[26]。Y UKON-BTK试验则纳入更长范围的病变(平均长度31 mm),选用负载西罗莫司的YUKON(Translumina)DES与BMS做对比。3年的随访结果显示DES有更高的保肢率及生存率[27]。

IDEAS试验选择了长段膝下病变,旨在对比DCB(drug coated balloon,DCB)与DES的疗效。该研究DES组平均病变长度达(146±56.7)mm。6个月的随访结果显示,DES组再狭窄率低于DCB组(28% vs. 57.9%,P=0.0457),但在保肢率及患者生存率方面,两组并无统计学差别[28]。

以上DES均为球扩式设计。Stentys公司的冠脉Stentys DES也被应用于膝下动脉,这是目前唯一一款用于膝下动脉的自膨式支架。PES-BTK-70试验论证了其治疗膝下病变的效果。该研究为单臂设计,平均病变长度17.2 mm,1年DES通畅率为72.6%,79.1%免于TLR,保肢率98.5%[29]。

3 小 结

尽管在LEASOD的腔内治疗中,“leaving nothing behind”已成为重要指导理念,但基于目前的技术水平还很难完全贴合理念。诸多的临床试验已经证实了DES在提高病变动脉远期通畅性的优势,但这些试验都主要基于短段病变的结果,真实世界的LEASOD动脉病变往往复杂许多。DES恰可以作为理念与现实间的一段过渡“桥梁”,在不断的迭代更新中造福患者。

[1] Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis[J]. Lancet,2013, 382(9901):1329–1340. doi: 10.1016/S0140–6736(13)61249–0.

[2] Rooke TW, Hirsch AT, Misra S, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA Guideline Recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2013,61(14):1555–1570. doi: 10.1016/j.jacc.2013.01.004.

[3] Lammer J, Zeller T, Hausegger KA, et al. Heparin-bonded covered stents versus bare-metal stents for complex femoropopliteal artery lesions: the randomized VIASTAR trial (Viabahn endoprosthesis with PROPATEN bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in superfi cial femoral artery occlusive disease)[J]. J Am Coll Cardiol, 2013, 62(15):1320–1327.doi: 10.1016/j.jacc.2013.05.079.

[4] Krankenberg H, Schlüter M, Steinkamp HJ, et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superfi cial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST)[J]. Circulation, 2007, 116(3):285–292.doi: 10.1161/CIRCULATIONAHA.107.689141.

[5] Forrester JS, Fishbein M, Helfant R, et al. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies[J]. J Am Coll Cardiol, 1991, 17(3):758–769.

[6] Herdeg C, Oberhoff M, Baumbach A, et al. Local paclitaxel delivery for the prevention of restenosis: biological effects and effi cacy in vivo[J]. J Am Coll Cardiol, 2000, 35(7):1969–1976.

[7] Giordano A, Romano A. Inhibition of human in-stent restenosis: a molecular view[J]. Curr Opin Pharmacol, 2011, 11(4): 372–377.doi: 10.1016/j.coph.2011.03.006.

[8] Javed U, Balwanz CR, Armstrong EJ, et al. Mid-term outcomes following endovascular re-intervention for iliac artery in-stent restenosis[J]. Catheter Cardiovasc Interv, 2013, 82(7):1176–1184.doi: 10.1002/ccd.24975.

[9] Duda SH, Pusich B, Richter G, et al. Sirolimus-eluting stents for the treatment of obstructive superfi cial femoral artery disease: sixmonth results[J]. Circulation, 2002, 106(12):1505–1509.

[10] Duda SH, Bosiers M, Lammer J, et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superfi cial femoral artery: long-term results from the SIROCCO trial[J]. J Endovasc Ther, 2006, 13(6):701–710. doi: 10.1583/05–1704.1.

[11] Lammer J, Bosiers M, Zeller T, et al. First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease[J]. J Vasc Surg, 2011, 54(2):394–401. doi:10.1016/j.jvs.2011.01.047.

[12] Schillinger M, Sabeti S, Loewe C, et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery[J]. N Engl J Med, 2006, 354(18): 1879–1888. doi: 10.1056/NEJMoa051303.

[13] Dake MD, Ansel GM, Jaff MR, et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial[J]. Circulation, 2016, 133(15):1472–1483. doi: 10.1161/CIRCULATIONAHA.115.016900.

[14] Dake MD, Ansel GM, Jaff MR, et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results[J]. Circ Cardiovasc Interv, 2011, 4(5):495–504. doi:10.1161/CIRCINTERVENTIONS.111.962324.

[15] Miki K, Fujii K, Shibuya M, et al. Impact of stent diameter on vascular response after self-expanding paclitaxel-eluting stent implantation in the superficial femoral artery[J]. J Cardiol, 2017,70(4): 346–352. doi: 10.1016/j.jjcc.2016.12.011.

[16] Müller-Hülsbeck S. Eluvia™ peripheral stent system for the treatment of peripheral lesions above the knee[J]. Expert Opin Drug Deliv, 2016, 5:1–6. doi: 10.1080/17425247.2016.1230098.

[17] Müller-Hülsbeck S, Keirse K, Zeller T, et al. Twelve-Month Results From the MAJESTIC Trial of the Eluvia Paclitaxel-Eluting Stent for Treatment of Obstructive Femoropopliteal Disease[J]. J Endovasc Ther, 2016, 23(5):701–707. doi: 10.1177/1526602816650206.

[18] Boston Scientific Corporation; Marlborough, MA. ELUVIA drugeluting stent versus Zilver PTX stent (IMPERIAL).In:ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2016 Nov 4]. Available from:clinicaltrials.gov/ct2/show/NCT02574481 NLM Identifier:NCT02574481.

[19] Iida O, Takahara M, Soga Y, et al. 1-Year Results of the ZEPHYR Registry (Zilver PTX for the Femoral Artery and Proximal Popliteal Artery): Predictors of Restenosis[J]. JACC Cardiovasc Interv, 2015,8:1105–1112. doi: 10.1016/j.jcin.2015.03.022.

[20] Qiu T, He R, Abunassar C, et al. Effect of two-year degradation on mechanical interaction between a bioresorbable scaffold and blood vessell[J]. J Mech Behav Biomed Mater, 2018, 78:254–265. doi:10.1016/j.jmbbm.2017.11.031.

[21] Lammer J, Bosiers M, Deloose K, et al. Bioresorbable Everolimus-Eluting Vascular Scaffold for Patients With Peripheral Artery Disease (ESPRIT I): 2-Year Clinical and Imaging Results[J].JACC Cardiovasc Interv, 2016, 9(11):1178–1187. doi: 10.1016/j.jcin.2016.02.051.

[22] Werner M, Micari A, Cioppa A, et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superfi cial femoral artery: the GAIA study [J].JACC Cardiovasc Interv, 2014, 7(3):305–312. doi: 10.1016/j.jcin.2013.09.009.

[23] Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial[J]. J Am Coll Cardiol, 2012, 60(22):2290–2295. doi: 10.1016/j.jacc.2012.08.989.

[24] Spreen MI, Martens JM, Hansen BE, et al. Percutaneous Transluminal Angioplasty and Drug-Eluting Stents for Infrapopliteal Lesions in Critical Limb Ischemia (PADI) Trial[J].Circ Cardiovasc Interv, 2016, 9(2):e002376. doi: 10.1161/CIRCINTERVENTIONS.114.002376.

[25] Spreen MI, Martens JM, Knippenberg B, et al. Long-Term Followup of the PADI Trial: Percutaneous Transluminal Angioplasty Versus Drug-Eluting Stents for Infrapopliteal Lesions in Critical Limb Ischemia[J]. J Am Heart Assoc, 2017, 6(4). pii: e004877. doi:10.1161/JAHA.116.004877.

[26] Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease[J]. J Vasc Surg, 2012, 55(2):390–398. doi: 10.1016/j.jvs.2011.07.099.

[27] Rastan A, Brechtel K, Krankenberg H, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial[J]. J Am Coll Cardiol, 2012, 60(7):587–591. doi: 10.1016/j.jacc.2012.04.035.

[28] Siablis D, Kitrou PM, Spiliopoulos S, et al. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial[J]. JACC Cardiovasc Interv, 2014,7(9):1048–1056. doi: 10.1016/j.jcin.2014.04.015.[29] Bosiers M, Callaert J, Keirse K, et al. One-Year Outcomes of the Paclitaxel-Eluting, Self-Expanding Stentys Stent System in the Treatment of Infrapopliteal Lesions in Patients With Critical Limb Ischemia[J]. J Endovasc Ther, 2017, 24(3):311–316. doi:10.1177/1526602817697319.

猜你喜欢
膝下莫司紫杉醇
电压门控离子通道参与紫杉醇所致周围神经病变的研究进展
心肌缺血预适应在紫杉醇释放冠脉球囊导管扩张术中的应用
我院肝移植术后患者西罗莫司血药浓度监测结果与分析*
西罗莫司对高脂饮食诱导的NAFLD大鼠外周血Treg/Th17细胞的影响*
紫杉醇、奈达铂联合放疗治疗食管癌的临床疗效评价
背 草
徐母育弯枣树
吸水链霉菌FC-904发酵代谢产物29-O-去甲基雷帕霉素的分离和结构鉴定
鱼尾
细胞穿膜-靶向双肽修饰紫杉醇纳米制剂的制备、表征及体外抗胶质瘤评价