青山
案情提要
一日,杜探长接到一个紧急电话,电话是他的好友王探长打来的,他最近碰到一件棘手的案子。他在跟踪四名嫌疑人,怀疑他们就是前几日黄金大劫案的盗窃犯。但是这伙人好像察觉到已被人跟踪,每日只是聚在一起吃喝、玩游戏,迟迟不分赃。王探长邀请杜探长帮忙。通过回看前几日的录像,杜探长发现嫌疑人不止四名,应该是五名,有一人每日都会出现在这四人吃饭的餐馆里,看着四人玩游戏。经杜探长推算,他们应该是每人设置了一个数字,组成了一组五个数字的密码,这样就不用担心有人偷走黄金。可他们没想到还没去取黄金,就被警察盯上了,所以他们想通过玩游戏的办法,将密码告诉一人。杜探长已经破译了前几日的游戏暗语,再破译出今天的游戏暗语,就能知道这组密码了。杜探长和王探长赶紧赶到嫌疑人每日吃饭的餐馆。
只见四人准备玩游戏了,其中一人分别在纸上写上1~9九个数字,然后把纸叠起来。每人从中抽取两张,并报出两数的关系。嫌疑人甲说他手里的两数相加为10,嫌疑人乙说他手里的两数相减为1,嫌疑人丙说他手里的两数之积为24,嫌疑人丁说他手里的两数之商为3。只见旁边每日出现的那人口中念念有词,杜探长也紧锁眉头,说道:“他们是在告诉那人,没有人拿的那个数字就是最后一个数字。那个数字应该是7。”王探长听完,迅速走進饭店,对五名嫌疑人说了一组密码,其中一名嫌疑人失声说道:“你怎么知道我们藏黄金的保险柜的密码?”
五人全部被逮捕,并交代了案情。
神勇的杜侦探又破了一桩案子,你能猜出杜探长是怎么推出密码最后一个数字的吗?
推理时刻
运用假设法,丙可能拿3、8或4、6,丁可能拿2、6,3、9或1、3。现分别假设——
(1)假设丙拿3、8,则丁只能拿2、6。如果甲拿7,因为3在丙手中,甲说的话就不成立;如果乙拿7,因为6在丁手中,8在丙手中,乙说的话就不成立;结论是7不可能有人拿。
(2)假设丙拿4、6,则丁可以拿3、9或1、3,先假设丁拿3、9。如果甲拿7,因为3在丁手中,甲说的话不成立;如果乙拿7,因为6在丙手中,乙只能拿7、8,他说的话才能成立。此时,3、4、6、7、8、9被拿,剩余1、2、5,但1、2、5任意两个数相加都不可能等于10,甲说的话就不成立。
(3)假设丙拿4、6,则丁拿1、3。同理,如果甲拿7,则甲说的话不成立;如果乙拿7,则乙只能拿7、8,他说的话才能成立。此时,1、3、4、6、7、8被拿,剩余2、5、9,但2、5、9任意两个数相加都不可能等于10,甲说的话就不成立。
由于以上假设已经穷尽各种可能性,结论是7不可能有人拿。所以嫌疑人想告诉同伙没人拿的那个数字是7。
想看更多精彩的侦探故事吗?那就赶紧订阅《数学大王》(小侦探)吧!邮发代号:48-219。