葛玉猛 李玉顺 童科挺 张家亮
摘 要:本文提出组合效应更好的薄壁型钢-重组竹组合工字形梁,薄壁型钢-重组竹组合工字形梁是将冷弯薄壁型钢与重组竹通过结构粘合剂或者结构粘合剂加自攻螺钉复合而成。以剪跨比、型钢厚度、腹板厚度和腹板高度等为参数进行12根组合梁的受剪性能试验,观测组合梁破坏过程、变形特征和分析受剪承载力的影响因素,并提出组合梁受剪承载力计算公式。研究结果表明,薄壁型钢-重组竹组合工字形梁整体工作性能良好,组合效应显著,具有较高的受剪承载力;组合梁的受剪承载力主要受剪跨比影响,随着剪跨比的增大其受剪承载力降低,当剪跨比较小时试件发生剪切破坏,随着剪跨比的增大组合梁破坏形态由剪切破坏过渡到弯曲破坏;本文提出的组合梁受剪承载力计算公式所得结果与试验结果之间吻合良好。
关键词:重组竹;冷弯薄壁型钢;组合工字形梁;剪跨比;受剪承载力
中图分类号:TU758文献标识码:B文章编号:1006-8023(2018)06-0072-08
Study on Shear Behavior of Thin-Wall Steel-Recombinant Bamboo Composite Beams
GE Yumeng, LI Yushun*, TONG Keting, ZHANG Jialiang
(School of Architecture Engineering and Environment, Ningbo University, Ningbo 315211)
Abstract: In this paper, it is proposed that the combination effect is better for the thin-walled steel-recombined bamboo composite I-beam. The thin-walled steel-recombined bamboo composite I-beam is composed of the cold-formed thin-walled steel and the recombined bamboo through the structural adhesive or the structural adhesive with the self tapping screw. The shear behavior test of 12 composite beams was carried out with parameters of shear span ratio, profile steel thickness, web thickness, and web height as parameters. The failure process and deformation characteristics of composite beams are observed, and the influencing factors of shear capacity are analyzed. The calculation formula of shear capacity of composite beams is proposed. The results show that the thin-walled steel-reconstituted bamboo composite I-beam has good overall work performance, significant combined effect, and high shear bearing capacity; the shear bearing capacity of the composite beam is mainly affected by the shear-span ratio. When the ratio increases, the shear capacity decreases. When the shear span is relatively small, the specimen undergoes shear failure. With the increase of the shear span ratio, the composite beam failure mode transitions from shear failure to bending failure. The results produced by the calculation formula of shear capacity of composite beams which is proposed in this paper are in good agreement with the experimental results.
Keywords: Reconstituted bamboo; cold-formed thin-wall steel; I-shaped composite beam; shear-span ratio; shear capacity
0 引言
傳统房屋建筑的梁柱主要使用钢筋混凝土结构,随着生活质量的提高,现代人对建筑中的梁柱结构有了新的要求,例如,梁要美观、轻质高强和绿色天然等。为了适应这一现状,一些新型结构的研究逐渐开始,尤其是绿色的竹木材料与高强度的钢材组合成工字形梁,最具推广价值和实用价值。在我国使用竹木作为建筑材料的历史非常悠久[1-2],木材虽然也有质量轻和强度高的特点,但是近些年来我国木材供需矛盾不断加剧,严重制约了我国新型建筑材料的发展;而国外对钢结构的建筑形式也研究颇深[3],目前国内的钢材也处在产能过剩的状态,在此基础上,本文考虑将冷弯薄壁型钢和重组竹组合为工字形梁。
(2)钢板厚度。以试件L-9、L-10为例,试件中型钢厚度为2.0 mm和1.5 mm,L-9比L-10承载力提高了30.43%,如图10(a)所示。
(3)腹板截面高度。试件L-1、L-2腹板高度分别为120、140 mm,随腹板截面高度增加其受剪承载力提高了16 kN,如图10(b),所示。
(4)腹板重组竹厚度。组合梁L-8比L-7腹板重组竹厚度高出5 mm,试件破坏时,L-8所受荷载极限比L-7高出8 kN。
3 跨中挠度及截面承载力
3.1 跨中挠度
根据组合梁L-1 ~ L-12跨中变形达到容许挠度6.4 mm时所对应加载的荷载P,再将P代入简支梁挠度计算式(1)计算理论容许挠度,计算公式由本文作者参考文献[18-19]提出,结果见表4。
式中:a为集中力作用点至近端支座距离;l为组合梁跨度;βb为钢-竹组合构件变形发展系数,当l ≤ 3.0 m时,βb取1.2;α = a/l。
分析表4中,数据,薄壁型钢-重组竹组合工字形梁跨中的理论挠度与试验挠度误差较小,基本控制在11%以内,组合梁L-4、L-5、L-8、L-12试验挠度曲线与计算所得理论挠度曲线对比(图11),由图11可知,组合梁理论容许挠度均大于试验挠度值,在工程应用中属于较安全。
3.2 受剪承载力
本文组合梁为工字型,主要由腹板承担所受剪力,计算时将重组竹腹板两侧的薄壁型钢考虑为加强重组竹腹板的抗剪能力(将薄壁型钢腹板截面换算成等高度的重组竹截面),并引入以下假定:① 重组竹抗剪强度均匀;② 弹性体假定和平截面假定;③ 重组竹发生剪切破坏即表示组合梁被破坏。
根据参考文献[20-22],本文作者提出了组合工字形梁受剪承载力计算公式(2)和(3)。考虑剪跨比产生的影响,根据公式(2)和公式(3)分别计算出薄壁型钢和重组竹的承载能力。受剪承载力公式:
式中:λ为剪跨比;fτ为重组竹顺纹抗剪强度,fτ = 14.79MPa;ζ为组合梁翼缘对组合梁受剪承载力的影响,ζ = 1.04;In为薄壁型钢的腹板截面惯性矩;Sn为 考虑薄壁型鋼的腹板截面面积,Sn = (bh2+2tsαhs2)/8;hs为薄壁型钢腹板位置截面高度;bn为薄壁型钢的腹板截面有效宽度,bn = b+2tsα;b、h为腹板位置重组竹厚度与高度;α为重组竹换算系数,α = Es/Ec;ts为腹板位置薄壁型钢截面厚度。
重组竹截面剪力计算公式:
式中:Sc为腹板位置重组竹截面面积矩;Ic为腹板位置重组竹截面惯性矩。
分析表5中对比结果可知,组合梁斜截面受剪承载力试验值与理论值误差不超过11%。斜截面受剪承载力计算公式(2)考虑将薄壁型钢腹板截面换算成等高度的重组竹截面,薄壁型钢黏贴在腹板重组竹上,用以提高组合梁的抗剪性能,在工程应用中这种方法比较安全。
4 结论
(1)组合梁由薄壁型钢和重组竹通过结构胶复合而成,整体性能突出,组合效应良好,加载过程中两种材料连接状况良好,发挥了各自良好的材料性能,有很大的发展前景和实用价值。
(2)本次试验中组合梁受剪承载力随剪跨比增大而减小;组合梁腹板位置的重组竹厚度和腹板处钢材厚度增加能有效地提高其受剪承载力;翼缘位置重组竹和型钢厚度变化基本不影响受剪承载力。
(3)组合梁破坏形态主要受剪跨比影响。当剪跨比λ≤2.0时,试件均出现了明显的剪切破坏特征;剪跨比λ = 2.5时,组合梁破坏形态向弯曲破坏发展。
(4)本文所提出的组合梁挠度与斜截面受剪承载力计算公式较为合理。组合梁L-1 ~ L-12跨中挠度与受剪承载力试验结果与理论计算值相近,误差基本控制在11%以内。
【参 考 文献】
[1]柳菁, 张家亮, 郭军, 等.现代竹结构建筑的发展现状[J].森林工程, 2013,29(5):126-130.
LIU J, ZHANG J L, GUO J, et al. The development of modern bamboo structure architecture[J]. Journal of Forest Engineering, 2013,29(5):126-130.
[2]龚正,袁少飞,张建,等.重组竹材生产设备现状及发展趋势[J].林业机械与木工设备,2018,46(9):4-9.
LONG Z, YUAN S F, ZHANG J, et al. Research status and development trend of reconstituted bamboo lumber production equipment[J]. Forestry Machinery & Woodworking Equipment,2018,46(9):4-9.
[3]费本华, 王戈, 任海清, 等. 我国发展木结构房屋的前景分析[J]. 木材工业, 2002,16(5):6-9.
FEI B H, WANG G, REN H Q, et al. Prospect analysis of developing wooden structure housing in China[J]. Timber Industry, 2002,16(5): 6-9.
[4]ROSOWSKY D V, ELLINGWOOD B R. Performance-based engineering of wood frame housing: fragility analysis methodology[J]. Journal of Structural Engineering, 2002,28(1):32-38.
[5]张齐生.中国竹材工业化利用[M]. 北京:中国林业出版社, 1995.
ZHANG Q S. Industrial utilization of bamboo in China[M]. Beijing: China Forestry Publishing House, 1995.
[6]宋孝金,劉晓辉.竹材的工业化利用[J].林业科技,2011,36(6):55-57.
SONG X J, LIU X H. Study on industrial utilization of bamboo[J]. Forestry Science & Technology,2011,36(6):55-57.
[7]黄祖波, 李春宝, 吴岩, 等.竹材在土木建筑中的应用[J].森林工程,2007,22(2):79-80.
HUANG Z B, LI C B, WU Y, et al. Application of bamboo in civil engineering[J]. Forest Engineering, 2007,22(2): 79-80.
[8]单炜, 李玉顺.竹材在建筑结构中的应用前景分析[J].森林工程, 2008,24(2):62-65.
SHAN W, LI Y S. Application prospect analysis of bamboo in building structure[J]. Forest Engineering, 2008,24(2):62-65.
[9]吴岩, 李玉顺, 葛贝德, 等.改性竹材的应用与前景[J].森林工程, 2008,24(6):68-71.
WU Y, LI Y S, GE B D, et al. Application and prospect of modified bamboo[J]. Forest Engineering, 2008,24(6):68-71.
[10]李和麟, 陈滔. 高性能重组竹制造技术研究[J]. 世界竹藤 通讯, 2010,8(4):27-29.
LI H L, CHEN T. Research on manufacturing technology of high performance reconstituted bamboo[J]. World Bamboo and Rattan Communication, 2010,8(4):27-29.
[11]汪孙国, 华毓坤. 重组竹制造工艺的研究[J]. 木材工业, 1991,5(2):14-18.
WANG S G, HUA Y K. Research on the manufacturing technology of reconstituted bamboo[J]. Timber Industry, 1991,5(2):14-18.
[12]魏万姝, 覃道春. 4种防霉剂对重组竹性能的影响[J]. 东北林业大学学报, 2011,39(4):93-95.
WEI W S, QIN D C. Effects of 4 fungicides on the properties of reconstituted bamboo[J]. Journal of Northeast Forestry University, 2011,39(4):93-95.
[13]张建,袁少飞,范慧,等.不同处理工艺对重组竹防腐防霉性能的影响[J].林业机械与木工设备,2017,45(11):37-40.
ZHANG J, YUAN S F, FAN H, et al. Influence of different treatment processes on anti-mildew and preservation properties of bamboo scrimber[J]. Forestry Machinery & Woodworking Equipment,2017,45(11):37-40.
[14]朱建东, 臧慧兰. 绿色建筑的新型建筑材料-重组竹[J]. 新型建筑材料, 2011,38(7):44-47.
ZHU J D, ZANG H L. A new building material for green building restructured bamboo[J]. New Building Material, 2011,38(7): 44-47.
[15]王忠和, 杜艳军, 董广.钢结构建筑的应用及发展[J].森林工程, 2002,18(3):54-55.
WANG Z H, DU Y J, DONG G. Application and development of steel structure buildings[J]. Forest Engineering, 2002,18(3): 54-55.
[16]吴健梅, 陆明.未来的人居建筑及其设计策略[J].森林工程, 2003,19(6):67-68.
WU J M, LU M. Future residential building and its design strategy[J]. Forest Engineering, 2003,19(6):67-68.
[17] 中华人民共和国建设部. (GB50017-2003)钢结构设计规范[S]. 北京:中国计划出版社, 2003.
Ministry of construction of People's Republic of China. (GB50017-2003) code for design of steel structures[S]. Beijing: China Planning Publishing House, 2003.
[18]李廉锟. 结构力学[M]. 北京:高等教育出版社, 1996
LI L K. Structural mechanics[M]. Beijing: Higher Education Press, 1996.
[19]《建筑结构静力计算手册》编写组.建筑结构静力计算手册(2版)[M].北京:中国建筑工业出版社, 2000.
Compiling group of manual for static calculation of building structures. Manual for static calculation of building structures (Second Edition) [M]. Beijing: China Construction Industry Press, 2000.
[20]李玉顺, 沈煌莹, 单炜, 等.钢-竹组合工字梁受剪性能试验研究[J].建筑结构学报, 2011,32(7):80-86.
LI Y S, SHEN H Y, SHAN W, et al. Experimental study on the performance of steel bamboo combination i-liang shoujian[J]. Journal of Building Structures, 2011,32(7): 80-86.
[21]赵天石, 王钧, 张野.内置H型钢PC组合梁受剪承载力试验研究[J].森林工程, 2010,26(2):74-76.
ZHAO T S, WANG J, ZHANG Y. Experimental study on shear bearing capacity of H composite steel PC composite beams[J]. Forest Engineering, 2010, 26(2):74-76.
[22]DL/T 5085-1999. Code for design of steel-concrete composite structures[S]. 1999.