孙立强 田献珍
摘 要:研究线性多步法求解Rα,β类非线性中立型时滞微分方程的数值稳定性.在适当条件下,获得了G(c,p,0)—代数稳定的线性多步法的稳定性及渐近稳定性的充分条件.
关键词:中立型时滞微分方程;线性多步法;G(c,p,0)—代数稳定;渐近稳定性
中图分类号:O241.8 DOI:10.16375/j.cnki.cn45-1395/t.2018.01.003
0 引言
中立型时滞微分方程在自动控制、生物、医学、化学、经济等领域有着广泛应用.由于其理论解难以获得,数值方法的研究及稳定性分析就显得尤为重要,此方面的研究取得了许多成果[1-5].余越昕等[6]在研究中立型时滞积分微分方程时,获得了线性θ-方法的渐近稳定性;并研究了单支方法求解一类刚性中立型时滞微分方程時的稳定性和渐近稳定性[7].而线性多步法关于非线性中立型时滞微分方程的数值稳定性研究尚未见于文献.本文研究复空间中G(c,p,q)—代数稳定[8]的线性多步法求解Rα,β类非线性中立型时滞微分方程时的稳定性,获得了线性多步法的稳定及渐近稳定的充分条件.
1 中立型时滞微分方程的稳定性
参考文献
[1]WANG W S,ZHANG Y, LI S F.Nonlinear stability of one-leg methods for delay differential equations of neutral type [J].Applied Numerical Mathematics, 2008 , 58(2) :122-130
[2]WANG W S,LI S F,SU K.Nonlinear stability of Runge-Kutta methods for neutral delay differential equations[J].Elsevier Science Inc. , 2007 , 214(1) :175-185.
[3]WANG W S,LI S F.Nonlinear stability of general linear methods for neutral delay differential equations [J].Journal of Computational & Applied Mathematics, 2009 , 224(2) :592-601.
[4]ZHANG C J. Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations [J].计算数学(英文版),2002 , 20(6) :583-590.
[5]余越昕,文立平,李寿佛.非线性中立型延迟微分方程线性方法的渐近稳定性[J].高等学校计算数学学报,2006,28(2):103-110.
[6]余越昕,刘忠艳,江春华.中立型延迟积分微分方程线性方法的渐近稳定性[J].山东大学学报(理学版),2010,45(1):102-106.
[7]余越昕,房松林,李寿佛.一类刚性中立型延迟微分方程单支方法的稳定性分析[J].湘潭大学自然科学学报,2011,33(4): 1-3.
[8]李寿佛.刚性常微分方程及刚性泛函微分方程数值分析[M].湘潭:湘潭大学出版社,2010.
[9]Dahlquist G.Error analysis for a class of methods for stiff non-linear initial value problems[C]. Springer Berlin Heidelberg , 1976,506 :60-72
[10]Dahlquist G.G-stability is equivalent to A-stability [J].Bit Numerical Mathematics, 1978 , 18(4) :384-401.
Abstract: This paper studied the numerical stability of linear multi-step methods for a class Rα,β of nonlinear neutral delay differential equations. Under the suitable conditions, the sufficient conditions of the stability and asymptotic stability of G(c, p, 0)- algebraically stable linear multi-step methods were obtained.
Key words: neutral delay differential equations; linear multi-step methods; G(c, p, 0)-algebraically stable; asymptotic stability
(学科编辑:张玉凤)