张慧梅,孟祥振,彭 川,3,杨更社,叶万军,申艳军,刘 慧
(1.西安科技大学 理学院,陕西 西安 710054;2.西安科技大学 建筑与土木工程学院,陕西 西安 710054;3.葛洲坝集团第五工程有限公司,湖北 宜昌 443002)
寒区岩石既受到一定应力场环境的作用,还受到因温度变化引起内部冰水相变的冻融循环作用,综合以上2种因素研究岩石的变形特性,是岩石力学研究的热点问题之一。
目前,对于寒区岩石变形特性的研究已有很多,并取得了一定的成果。对于岩石力学特性方面的研究,Matsuoka,张慧梅、闻磊、贾海梁、Huseyin,Khanlari,刘杰等通过选用不同的岩石,对其进行冻融循环试验,系统研究了岩石的物理力学特性[1-7];Jihwan等研究了冻融玄武岩、闪长岩、凝灰岩的物理力学性质,并采用SEM技术和CT扫描,分析冻融循环过程中岩石微结构的变化[8];张慧梅、Prick和Fahey分别研究了冻融循环对页岩力学特性及强度的影响规律[9-11];Huseyin,Yavuz,Bayram在冻融环境作用下,分别测得安山岩的单轴抗压强度、波速及其他力学参数[12-14];周科平和李杰林进行了冻融循环条件下花岗岩核磁共振及物理特性实验研究[15-16];陈有亮、韩铁林、丁梧秀、刘松明等研究了岩石在水化学溶液及冻融作用下的力学特征[17-20]。对于冻融岩石损伤本构关系的研究,陈有亮、关区山通过岩石和砌体冻融循环试验和压缩试验,建立了单向应力状态下冻融与荷载耦合模型[21-22];张慧梅对损伤变量的内涵进行延伸,釆用损伤力学理论及推广后的应变等价原理相结合的方法,建立冻融受荷岩石损伤模型[23];袁小清在冻融循环条件下考虑受荷节理岩体的宏细观缺陷耦合问题,建立了岩体损伤模型[24]。现如今关于冻融岩石本构关系的研究相对较少且存在不足之处:其一,只考虑冻融效应而忽略荷载,尤其是围压的作用;再者,较少反映岩石变形的峰后软化阶段及残余变形阶段。
文中将岩石微元简化为冻融损伤、受荷损伤及未损伤3部分;冻融岩石所受轴向荷载由这3部分承担,其中损伤微元承担残余强度;通过探讨冻融损伤、受荷损伤以及总损伤3个变量之间的关系,建立可反映冻融岩石受荷变形全过程特征的损伤演化方程;在微元破坏符合D-P准则的条件下,建立相应的损伤本构模型,确定了模型参数的表达式。
图1 冻融岩石微观应力分析Fig.1 Microstress analysis of freeze-thaw rock
通过冻融岩石各部分微观受力分析可得
(1)
定义岩石冻融损伤变量
(2)
岩石冻融后未损伤部分受到荷载作用时产生损伤,此时可定义冻融岩石的受荷损伤变量为
(3)
整体而言,岩石微元破坏是由冻融、荷载的共同作用引起的,所以也可按岩石的最终损伤程度定义冻融岩石受荷时的总损伤变量为
(4)
将式(2)、(3)代入式(4)可得
Dm=D+Dn-DDn
(5)
式(5)即为文中确定的冻融岩石受荷时总损伤变量的表达式。式(5)表明,岩石总损伤并不是简单的冻融损伤与受荷损伤之和,而是2种损伤相互作用、相互影响,致使岩石损伤较两者之和有所弱化。
由式(1)、(4)可得
(6)
式(6)即为文中建立的冻融岩石受荷时的损伤本构模型。
依据岩石物理参数泊松比的意义以及岩石各部分的变形协调关系,在等围压条件下,得到冻融岩石受荷时关于轴向方向的本构模型
σ1=(Enε1+2μnσ3)(1-Dm)+σrDm
(7)
式中En,μn分别为岩石在n次冻融循环作用下的弹性模量,泊松比。
依据损伤力学理论,岩石宏观力学性能的响应能够代表其内部的劣化程度。因此,岩石的冻融损伤变量Dn也可以根据弹性模量在冻融循环过程中的变化来定义,即
(8)
式中E0为冻融0次时的弹性模量。
根据岩石在细观结构上的非均质性,其内部微元体力学性质的分布具有随机性,冻融之后未损伤部分继续加载时,其内部受荷损伤也是一个连续过程,当假定岩石微元强度服从Weibull随机分布时,受荷损伤变量D可表示为
(9)
式中F为岩石微元强度随机分布变量,MPa;F0,m分别为模型参数。
将式(8)、(9)代入式(5)可得冻融岩石受荷变形全过程特征的损伤演化模型
(10)
将式(10)代入式(7)可得
(11)
损伤本构模型能否更好的反映一定条件下岩石的变形特征,其关键之处在于岩石微元强度的合理度量。为此,文中假定冻融受荷岩石微元破坏服从D-P准则,则可表示为
(12)
(13)
(14)
联立式(12)、(13)和(14)可得F的表达式
(15)
设应力-应变曲线峰值应力为σsc,且其所对应的应变值为εsc,则在岩石应力应变关系曲线中,σsc与所对应的εsc满足以下几何条件
将条件(a)代入式(9),得到关于参数F0和m的关系式
(16)
式中Fsc为曲线极值点对应的F.
对式(11)进行求导,并将条件(b)代入化简可得
(17)
联立式(16)、式(17)可得模型参数具体表达式
m=
(18)
(19)
为了验证文中推导的本构模型,将红砂岩加工成直径50 mm,高100 mm的圆柱体试样,测得其内摩擦角为36°,并对非冻融状态及冻融后的红砂岩进行常规三轴压缩力学特性试验。试验采用位移控制的方法,分别在2,4及6 MPa的围压环境下进行,得到不同冻融次数和围压下红砂岩的力学参数,见表1~表3.
将式(11)中的F及参数m和F0由式(15)、
表1 围压为2 MPa时红砂岩的力学参数
(18)和(19)替换后,并将表1~表3中的相关试验数据代入式(11)计算得到本构模型的理论曲线,并与试验曲线对比,如图2所示。
图2 岩石损伤本构模型的验证Fig.2 Verification of damage constitutive model for rock
表2 围压为4 MPa时红砂岩的力学参数
表3 围压为6 MPa时红砂岩的力学参数
由图2可知,文中建立的模型可以对岩石变形全过程进行合理地描述,从而验证了模型的合理性。
在岩石微元强度服从Weibull分布基础上建立的损伤本构模型中都包含参数m和F0,随着参数的改变,将影响本构模型的形态。文中以冻融次数为0次、围压为2,4 MPa时的应力-应变曲线为例,分析模型参数对模型的影响规律。图3与图4分别为模型参数m及F0对模型曲线的影响图。
图3 模型参数m对模型曲线的影响Fig.3 Influence of parameter m on the model curve
从图3,图4中可以看出,参数m和F0的改变对岩石损伤之前及岩石完全破坏阶段没有影响,但对岩石的受荷初始损伤点及完全破坏时对应的应变值产生影响,特别对岩石受荷损伤路径的影响较大。
随着m的增加,弹性阶段延长,峰值应力增加,峰值点右移,但不太明显,峰后应力降低速率加剧,达到完全破坏时的应变减小,说明岩石的脆性增强。随着F0增大,弹性阶段延长,峰值应力增大,峰值点对应的应变增加,达到完全破坏时的应变增大,说明岩石的塑性增强。
图4 模型参数F0对模型曲线的影响Fig.4 Influence of parameter F0 on the model curve
1)针对寒区岩石的受荷特点,确定总损伤变量,并根据岩石破坏全过程特征,基于岩石微元强度服从weibull随机分布的特点,在岩石微元破坏符合D-P准则的基础上,建立了考虑残余强度的冻融岩石损伤本构模型;
2)通过不同冻融次数及围压作用下模型理论曲线与试验曲线的对比分析发现,文中建立的模型既可以对岩石峰前应力-应变曲线进行合理的描述,同时又能较好地反映峰后应变软化特性及破坏后残余强度特征;
3)参数m和F0的改变对岩石损伤前及破坏后的应力应变曲线没有影响,但对损伤阶段的影响较大。随着m增加,峰值应力增加,峰后应力降低速率加剧,达到破坏时的应变减小,岩石脆性增强;随着F0增大,峰值应力及对应的应变增加,达到破坏时的应变增大,塑性增强。
参考文献(References):
[1]Matsuoka N.Mechanisms of rock breakdown by frost action:an experimental approach[J].Cold Regions Science and Technology,1990,17(3):253-270.
[2]张慧梅,杨更社.冻融岩石损伤劣化及力学特性试验研究[J].煤炭学报,2013,38(10):1756-1762.
ZHANG Hui-mei,YANG Geng-she.Experiment study of damage deterioration and mechanical properties for freezing-thawing rock[J].Journal of China Coal Society,2013,38(10):1756-1762.
[3]闻磊,李夕兵,尹彦波,等.冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J].冰川冻土,2014,36(3):632-639.
WEN Lei,LI Xi-bing,YIN Yan-bo,et al.Study of physico-mechanical properties of granite porphyry and limestone in slopes of open-pit metal mine under freezing-thawing cycles and their application[J].Journal of Glaciology and Geocryology,2014,36(3):632-639.
[4]贾海梁,项伟,谭龙,等.砂岩冻融损伤机制的理论分析和试验验证[J].岩石力学与工程学报,2016,35(5):879-895.
JIA Hai-liang,XIANG Wei,TAN Long,et al.Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(5):879-895.
[5]Huseyin Y.Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone[J].Bulletin of Engineering Geology and the Environment,2011,70(2):187-192.
[6]Khanlari G H,Abdilor Y.The influence of wet-dry,freeze-thaw and heat-cool cycles on physical and mechanical properties of upper red sandstones[J].Bulletin of Engineering Geology and the Enviroment,2015(74):1287-1300.
[7]刘杰,徐春霖,王瑞红.冻融循环作用下损伤砂岩物理特性研究[J].水力发电学报,2016,35(5):123-130.
LIU Jie,XU Chun-lin,WANG Rui-hong.Physical characteristics of sandstone under freeze-thaw cycles[J].Journal of Hydroelectric Engineering,2016,35(5):123-130.
[8]Jihwan P,Chang-Uk Hyun,Hyeong-Dong Park.Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J].Bulletin of Engineering Geology and the Environment,2014,74(2):555-565.
[9]张慧梅,杨更社.水分及冻融效应对页岩力学特性影响的试验研究[J].武汉理工大学学报,2014,36(2):95-99.
ZHANG Hui-mei,YANG Geng-she.Experimental study on moisture and freeze-thaw effect of mechanical properties of shale[J].Journal of Wuhan University of Technology,2014,36(2):95-99.
[10]Prick A.Dilatometrical behavior of porous calcareous rock samples subjected to freeze-thaw cycles[J].Catena,1995,25:7-20.
[11]Fahey B D.Frost action and hydration as rock weathering mechanisms on schist:a laboratory study[J].Earth Surface Processes and Landforms,1983,8(6):535-545.
[12]Huseyin Y.Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone[J].Bulletin of Engineering Geology and the Environment,2011,70(2):187-192.
[13]Yavuz H.Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone[J].Bulletin of Engineering Geology and the Environment,2010,70:187-192.
[14]Bayram F.Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J].Cold Regions Science and Technology,2012(83-84):98-102.
[15]周科平,许玉娟,李杰林,等.冻融循环对风化花岗岩物理特性影响的实验研究[J].煤炭学报,2012,37(增1):70-74.
ZHOU Ke-ping,XU Yu-juan,LI Jie-lin,et al.Experiment study of freezing thawing cycle influence on physical characteristics of weathered granite[J].Journal of China Coal Society,2012,37(Suppl.1):70-74.
[16]李杰林,周科平,张亚民,等.冻融循环条件下风化花岗岩物理特性的实验研究[J].中南大学学报,2014,45(3):798-802.
LI Jie-lin,ZHOU Ke-ping,ZHANG Ya-min,et al.Experiment study on physical characteristics in weathered granite under freezing-thawing cycles[J].Journal of Central South University,2014,45(3):798-802.
[17]陈有亮,王朋,张学伟,等.花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J].岩土工程学报,2014,36(12):2226-2235.
CHEN You-liang,WANG Peng,ZHANG Xue-wei,et al.Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J].Chinese Journal of Geotechnical Engineering,2014,36(12):2226-2235.
[18]韩铁林,师俊平,陈蕴生.砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J].水利学报,2016,47(5):644-655.
HAN Tie-lin,SHI Jun-ping,CHEN Yun-sheng.Laboratory investigations on the mechanical properties degradation of sandstone under the combined action between water chemical corrosion and freezing and thawing cycles[J].Shui Li Xue Bao,2016,47(5):644-655.
[19]丁梧秀,徐桃,王鸿毅.水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J].岩石力学与工程学报,2015,34(5):979-985.
DING Wu-xiu,XU Tao,WANG Hong-yi.Experiment study of mechanical properties of limestone under coupled chemical solution and freezing-thawing process[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(5):979-985.
[20]刘松明,陈有亮,杜曦,等.酸侵蚀区白砂岩冻融损伤的影响因素研究[J].水资源与水工程学报,2014,25(5):127-131.
LIU Song-ming,CHEN You-liang,DU Xi,et al.Study on influence factor of freeing-thawing damage of white sandstone in acid erosion area[J].Journal of Water Research and Water Engineering,2014,25(5):127-131.
[21]陈有亮,代明星,刘明亮,等.含初始损伤砂岩的冻融损伤试验研究[J].力学季刊,2013,34(1):74-80.
CHEN You-liang,DAI Ming-xing,LIU Ming-liang,et al.Experimental investigation on freezing damage characteristics of granite with initial damage[J].Chinese Quarterly of Mechanics,2013,34(1):74-80.
[22]郑山锁,赵鹏.冻融循环条件下砌体受压损伤本构模型[J].工业建筑,2015,45(2):15-18.
ZHENG Shan-suo,ZHAO Peng.Constitutive relationship model for masonry in compression under action of freeze-thaw cycle[J].Industrial Construction,2015,45(2):15-18.
[23]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3):471-476.
ZHANG Hui-mei,YANG Geng-she.Research on damage model of rock under coupling action of freeze-thaw and load[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):471-476.
[24]袁小清,刘红岩,刘京平.冻融荷载耦合作用下节理岩体损伤本构模型[J].岩石力学与工程学报,2015,34(8):1602-1611.
YUAN Xiao-qing,LIU Hong-yan,LIU Jing-ping.A damaging model of jointed rock under coupled action of freezing and thawing[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1602-1611.