广东良口亚髻山霞石正长岩地球化学特征及大地构造意义*

2018-04-02 09:40苏扣林
关键词:图解碱性花岗岩

苏扣林

(广州市地质调查院,广东 广州 510440)

广东良口亚髻山霞石正长岩位于广州市从化区良口石岭村和佛冈县四九芒寨村一带,面积约7.45 km2,2010年该岩体被广东省国土资源厅列为典型岩石遗迹。该岩体面积小但成因特殊,是华南陆块腹地早白垩世重要的代表性碱性岩体,对于华南陆块乃至整个中国东部晚中生代地球动力学过程和大地构造环境有着重要意义[1-2]。该岩体最初于20世纪60年代区测工作中被发现[3],被冠名为“恶鸡脑”岩体;后来又有很多学者以“从化石岭碱性杂岩”[4]、“从化石岭方钠石正长岩”[5-6]、“恶鸡脑碱性正长岩”[7]、“从化石岭碱性杂岩体”[8]等冠名。2010年,广东省正式以“亚髻山霞石正长岩”命名。该岩体定年也运用了多种方法和手段,最早是角闪石Ar-Ar法获得的坪年龄为127.5 Ma[9],矿物-全岩Rb-Sr等时线法年龄为145 Ma[6]锆石U-Pb年龄为137±2 Ma[10],140.9±1.4 Ma[11]和125.3±3.51 Ma[8];本文获得全岩Rb-Sr等时线法年龄为134.6±8.9 Ma。因此,可以认为该岩体侵位时间140~130 Ma,为白垩纪早期形成产物。

1 区域地质概况

据1∶100万广东省地质构造图,良口亚髻山霞石正长岩位于NE向广州-从化断裂带和EW隐伏佛冈-丰良深大断裂带交汇部位,岩体总体走向近东西向,受F4断层控制;西端受北东向F1断层影响,岩体向北突出呈蝌蚪状;岩体最宽达2.2 km,面积约7.45 km2,呈岩株状产出,岩体尾部分布有燕山期黄田埔单元细粒花岗岩(J3H),北东面为隐伏的石磴子组(C1sh)灰岩,其余外围为燕山期高桥单元中粒斑状黑云母二长花岗岩(J3G),岩株与外围岩体呈侵入接触,产状向外倾,倾角在75°~85°。F1断层北东走向,倾角70°~78°,长2 100 m,宽1.0~1.5 m(图1)。

2 岩相学特征

根据主要造岩矿物组合、结构和构造,亚髻山霞石正长岩可划分出2个相带,即霞石角闪正长岩带(内带)和黑云角闪正长岩带(外带)。

1)内带霞石角闪正长岩:只出露在亚髻山山顶附近,面积0.70 km2,约占碱性岩体出露面积9.4%。岩石为浅灰色,风化后为灰白色,中细粒,似粗面结构,块状构造,粒度1~3 mm。矿物特征:碱性长石主要为微斜条纹长石,次之为正长石,具有条纹连晶构造,呈板柱状自形-半自形晶体,卡式双晶发育,晶体具有定向或半定向排列,含量介于72%~80%之间;斜长石为灰白色,呈半自形的板柱状,粒径0.5~1.5 mm,聚片双晶,含量为3%~10%;角闪石呈自形-半自形柱状,有较强的多色性,有两组菱形的完全解理和六边形切面,粒径0.2~1.5 mm,Ng′-蓝灰、蓝绿或褐绿色,Nm′-绿色,Np′-淡草绿色、蓝绿色,Ng∧C=25(最大),2V(-)光轴角偏小,为富铁和钠的角闪石,含量为5%~8%;浅红色霞石呈细小六方柱状产于长石中,呈红色斑点“红诊”现象,油脂光泽,负低突起,正交偏光下近于全消光,粒径0.1~1.2 mm,含量1%~5%;黑云母呈厚板状自形-半自形晶体,Ng-黑褐、深褐色,Nm-褐色,Np-淡黄色,含量1%~2%;蚀变方钠石为均质体,N<1.540,无色透明,含量小于1%。手标本及岩石显微照片见图2(a和b)。

图1 广东亚髻山霞石正长岩区域地质简图Fig.1 Regional geological sketch map of the Yajishan nepheline-syenite1-高桥单元中粗斑状二长花岗岩;2-黄田埔单元细粒花岗岩;3-霞石正长岩;4-石磴子组灰岩;5-内带(霞石角闪正长岩);6-外带(黑云角闪正长岩);7-断裂及编号;8-地质界线;9-岩相带界线

2)外带黑云角闪正长岩:面积6.75 km2,约占碱性岩体出露面积90.6%。岩石为浅灰色,风化后为灰白色,中粗粒结构,似花岗结构,块状构造,粒度3~6 mm。矿物特征:碱性长石为主要是微斜条纹长石,次之为正长石,具有条纹连晶构造,呈宽板状、板条状自形-半自形晶体,卡式双晶发育,晶体具有定向或半定向排列,含量介于60%~75%之间;斜长石为灰白色,呈半自形的板状,相对粒径小于碱性长石,大小0.5~3 mm,见有聚片双晶等现象,含量为10%~15%;角闪石呈半自形-它形柱状,为富铁和钠的角闪石,含量为7%~8%;黑云母,黄褐色-棕黄色,具有较强的多色性,吸收性,呈厚板状自形-半自形晶体,见有一组极完全的解,粒径0.5~2 mm,含量为2%~3%;浅红色霞石呈细小六方柱状产于长石中,含量不超过1%。见有少量的石英,含量小于1%,呈他形粒状,粒径0.2~1 mm,出现于长石晶体的间隙之间。手标本及岩石显微照片见图2(c和d)。

由内带向外带岩石矿物成份、结构和构造特征表现出以下变化: ① 粒度由细粒或中细粒→中粗粒变化。② 霞石含量由约3%→0%变化,由无石英→少量石英(约1%)变化。③ 由似粗面结构或似条带→似花岗结构变化(暗色矿物比较均匀)。

CIPW标准矿物计算(表1)内带出现了橄榄石,外带出现了紫苏辉石,反映了岩石由来自上地幔岩浆分异而成。

图2 广东亚髻山碱性岩体岩石标本及岩石正交偏光显微照片Am-角闪石;Ne-霞石;Or-钾长石;Pl-斜长石;Q-石英Fig.2  Hand specimens and photomicrographs of the Yajishan nepheline-syenite

wB/%

3 岩石化学特征

3.1 分析方法

主量元素、微量元素和稀土元素由澳实矿物实验室(广州)完成,同位素分析由澳实总部(澳大利亚)实验室完成。其中主量元素采用PAnalytic PW2424型荧光光谱仪(XRF)分析,微量元素采用Agilent 7700x型电感耦合等离子体发射质谱(ICP-MS)分析,稀土元素采用Perkin Elmer Elan 9000型电感耦合等离子体发射质谱(ICP-MS)分析。XRF主量元素分析方法与Goto and Tatsumi[12]报道的相似,分析精度优于1%。微量元素分析流程和相关参数见刘颖等[13],分析精度优于5%。Rb-Sr和Sm-Nd同位素测试,采用同位素稀释-扇形电感耦合等离子质谱(ID-ICP-SFMS)测定Rb-Sr和Sm-Nd的精确含量,采用Eichrom锶离子交换色谱柱分离富集Sr,采用AG50-X8离子交换柱分离稀土元素、并采用Ln树脂HDEHP基离子交换色谱分离Nd与Sm,然后采用ThermoScientific NEPTUNE型多接收器电感耦合等离子体质谱仪(MC-ICP-MS)在静态模式下分别测定Sr同位素比值和Nd同位素比值,Sr同位素分析精度可达到RSD<0.01%,Nd同位素分析精度可达RSD<0.005%,详细的分析流程见梁细荣等[14]。

3.2 主量氧化物特征

碱性岩体主要元素按岩相带分类统计(表2),内带16件样品,w(SiO2) 59.32%~62.96%,平均值60.45%,李特曼指数(σ)7.45~9.68,平均值8.54,赖特碱度率(A.R)3.38~5.78,平均值4.33,全碱(ALK)11.34~13.11,平均值12.19,铝碱比(ACNK)0.89~1.23,平均值1.03,w(FeOT)/w(MgO) 8~64,平均值19.91,TAS图解落在正长岩区(图3),SiO2-AR图解落在碱性-过碱性区(图4a),NK/A-ACNK图解落在准铝-过铝区(图4b)。

外带123件样品,w(SiO2) 55.37%~66.95%,平均值60.34%,李特曼指数(σ)2.30~11.27,平均值7.69,赖特碱度率(AR)1.84~5.53,平均值3.79,全碱(ALK)6.39~13.56,平均值11.47,铝碱比(ACNK)0.75~2.49,平均值1.06,w(FeOT)/w(MgO) 3~101,平均值15.78,TAS图解落在正长岩(大部分)-二长岩区,SiO2-AR图解落在碱性(大部分)-过碱性区,NK/A-ACNK图解落在准铝-过铝区。

表2 广东亚髻山霞石正长岩主量元素(wB/%)和微量元素(wB/(mg·kg-1))Table 2 Major elements (wB/%) and trace elements (wB/(mg·kg-1)) of the Yajishan nepheline-syenite

续上表

LOI1.161.861.454.16Total99.3899.4999.9699.38σ8.547.692.211.89AR4.333.793.622.15ALK12.1911.478.206.47ACNK1.031.061.181.06NK/A0.890.830.780.56K2O/Na2O0.971.501.592.87FeOT/MgO19.9115.785.153.01R128957826212630R2491548367719Cs5.005.8510.6912.57Rb262.50262.36582.22329.00Ba196.81321.5584.61830.30Th20.1118.9547.0316.71U4.314.6022.717.37Nb81.1371.7256.7217.48Ta3.603.4311.522.04K4.955.024.093.63Al9.168.897.197.00La76.0297.6831.2051.15Ce130.41146.1779.0394.65Pb29.9638.3651.9066.24Pr19.3020.717.1110.20Sr94.99158.4633.87217.30P188.13373.63100.00695.00Nd61.3364.6326.9933.24Sm8.589.437.515.89Zr247.06319.8572.58272.70Hf6.186.853.696.60Eu0.731.270.361.15Ti0.120.180.070.28Gd6.457.117.924.44Tb0.971.031.570.66Dy5.656.2010.503.66Y24.4824.2455.5815.96Ho1.191.262.150.71Er3.523.687.262.01Tm0.550.571.190.30Yb4.033.908.802.00Lu0.670.631.290.31Sc0.911.844.135.44V5.196.984.8954.00Cr6.564.464.5619.90Mn1360.691229.31410.67736.60Co3.033.001.275.62Ni1.331.171.892.56Cu7.236.4016.637.46Zn120.56119.8836.6793.20Ga24.5422.2424.8119.16

续上表

ΣREE343.86388.52248.46226.32ΣCe/ΣYb6.327.862.346.55(La/Yb)N12.4416.434.2117.50(La/Sm)N5.856.752.725.31(Gd/Yb)N1.241.370.851.92δEu0.300.470.160.70δCe0.820.791.281.00Rb/Sr3.892.7127.181.74Rb/Ba1.931.6115.250.57Nb/Ta22.6821.235.489.16Zr/Hf39.9643.0719.6336.85Yb/Ta1.121.130.881.06Y/Nb0.300.331.121.0110000Ga/Al2.692.513.472.75Ta/Hf0.650.823.580.39Th/Hf3.614.6814.163.34Th/Ta5.635.837.139.39Zr/Y11.6621.032.0317.55

σ—李特曼指数;AR—赖特碱度率;ACNK=Al2O3/(CaO+Na2O+K2O);NK/A= (K2O+Na2O) /Al2O3;FeOT=(TFe2O3×0.9);ALK=K2O+Na2O;R1=4Si-11(Na+K)-2(Fe+Ti);R2=Al+2Mg+6CaO(阳离子数)

图3  广东亚髻山霞石正长岩TAS图解(据Middlemost[15])Fig.3 TAS diagrams of the Yajishan nepheline-syenites

3.3 微量元素特征

原始地幔标准化微量元素蛛网图显示,广东亚髻山霞石正长岩明显亏损Ba、Sr、P、Ti、Eu等元素,并形成尖锐谷(图5a),这可能与斜长石分离结晶有关。从表2可知,w(Rb)/w(Sr)比值由2.71(外带)变化到7.89(内带),而w(Rb)/w(Ba)比值则由1.61(外带)上升到1.93(内带),远高于原始地幔的相应值(分别为0.029和0.088[18]),w(Zr)/w(Hf)比值在39.96(内带)~43.07(外带),高于原始岩幔的比值(34~36)[19],反映了该岩体经历了较高程度的分异演化。

Nb、Ta为不相容高场强元素,一般在俯冲板块,挤压、高温和脱水环境下产生分馏,亚髻山岩体w(Nb)/w(Ta)比值介于21.23(外带)~22.68(内带)之间,远高于原始岩幔的比值(17.5±2.0[19]),这可能是古太平洋板块俯冲对南岭地区纵深影响的表观之一[31]。

3.4 稀土元素特征

原始地幔标准化稀土配分图呈海鸥型(图5b)显示,亚髻山霞石正长岩δEu负异常明显,其值介于0.30(内带)~0.47(外带)之间,这与斜长石结晶有关,该岩石的稀土总量ΣREE由344 mg/kg(内带)变化到389 mg/kg(外带),相对富集且含量较高;w(∑Ce)/w(∑Y)介于6.32(内带)~7.86(外带)之间,显示明显右倾,轻稀土分馏明显;(La/Yb)N介于12.44(内带)~16.43(外带)之间,具有较富集的轻稀土。上述特征反映了亚髻山岩体原始岩浆来源很深,分离结晶等复杂成岩过程[21]。

3.5 Rb-Sr、Nd-Sm同位素特征

亚髻山岩体12件样品Rb-Sr和Nd-Sm同位素测试结果见表3。Isr值0.705 33~0.708 6,平均值0.706 75;εNd(t)值-1.1~-3.6,平均值-2.8,Nd的二阶段模式年龄介于680~910 Ma之间,平均值815 Ma,暗示了来自上地幔岩浆受少量壳源物质的混染。43Nd/144Nd比值和εNd(t)高于周围高桥单元花岗岩(0.512 164和-8.0)[7],而模式年龄则远低于周围高桥单元花岗岩(1 600 Ma)[7],和外围花岗岩岩体有本质区别,不支持该岩体成因为佛冈岩体分异说[4]。

图4  广东亚髻山霞石正长岩SiO2-AR(a)和NK/A-ACNK(b)图解(据Wright[16] [和Maniar & Piccolli[17])Fig.4 Plots of A.R-SiO2(a)and ACNK-NK/A (b) of the Yajishan nepheline-syenites

图5 广东亚髻山霞石正长岩微量元素蛛网图(a)和稀土元素配分图(b)((a)原始地幔标准化值据Sun and McDonough[20];(b)球粒陨石标准化值据McDonough and Sun[19] )Fig.5 The primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of the Yajishan nepheline-syenites

相带编号SmNd147Sm/144Nd143Nd/144Nd±2σεNd(t)T2DM/MaRbSr87Rb/86Sr87Sr/86Sr±2σISr内带H515.77340.030.08720.512477±8-3.1830188.457.859.4450.72753±200.7086H528.60058.830.08840.512466±8-3.4850201.5118.84.910.71643±400.70659H538.27555.920.08950.512465±9-3.4860233.665.7310.310.72739±500.70674H545.30737.010.08670.512466±8-3.4840210.428.6321.360.74813±100.70533H558.11655.550.08830.512483±7-3.0830197129.24.4160.71509±700.70624外带H14.95432.850.09120.512515±10-2.4810263.2149.75.0930.71789±200.70769ZK101-H108.26252.840.09460.512512±10-2.5830214.4103.406.0040.71797±300.70594ZK101-H1512.5287.200.08680.512507±8-2.6790225.7107.306.0940.71911±200.70699ZK101-H204.88431.210.09460.512456±9-3.6910168.3190.802.5540.71334±500.70822ZK102-H200.8386.0250.08410.512581±8-1.1680277.564.7012.4500.73073±200.70578ZK102-H264.01628.590.08500.512517±9-2.4770227.6159.704.1280.71488±200.70661ZK102-H323.63925.990.08470.512501±8-2.7780260.0117.006.4400.71922±200.70631平均值6.2742.670.08840.512496±9-2.8815222.3107.737.7670.72231±300.70675

1)岩体侵位时间取140 Ma

在εNd(t)-ISr图解上投影到华南I型花岗岩中(图6)。

图6 广东亚髻山霞石正长岩εNd(t)-ISr图解(据Ding et al[22])Fig.6 εNd vs ISr diagram of the Yajishan nepheline-syenites

3.6 Rb-Sr同位素年龄

本次获得的全岩Rb-Sr同位素年龄为134.9±8.9 Ma(12个样品,图7),MSWD=0.75,等时线年龄较为可信。从区域地质环境条件分析,在该岩体南部,黄田埔单元碱性中细粒花岗岩(146±13 Ma)[23]盖在该岩体之上,该岩体形成于早白垩世,时间在140~130 Ma相对较为准确。

4 岩体物质来源及成因

A型花岗岩的概念首先由Loisell et al[24]提出来,认为该类岩石具有“三A”特征,即非造山(anorogenic)、高碱质(alkaline)和岩浆贫水(anhydrous)。文献[25-28]根据构造和起源不同再进一步细分为A1型和A2型二个亚类,其中A1型与上地幔热柱或裂谷有关;A2型则与大陆边缘地壳伸展作用有关。

图7 广东亚髻山霞石正长岩全岩87Sr/86Sr-87Rb/86Sr图解Fig.7 The 87Sr/86Sr-87Rb/86Sr diagram for the Yajishan nepheline-syenites

亚髻山碱性岩具有A型花岗岩特点(图8),与高桥单元中粒斑状黑云母二长花岗(佛冈岩体)有明显区别,在Nb-Y-Ce和Nb-Y-3Ga三角投影中(图8),绝大部分投影到A1花岗岩中。

亚髻山碱性岩在Th/Hf-Ta/Hf判别图投影中(图9),大部分投影到Ⅳ3大陆拉张带(或初始裂谷)玄武岩区,少部分投影到Ⅳ2陆内裂谷碱性玄武岩区,与陆内裂谷有关。

亚髻山霞石正长岩在R1-R2图解投影中(图10),大部分投影到非造山区或造山晚期。

在中-晚侏罗世,古太平洋板块以低角度快速向欧亚板块下俯冲,板块间挤压强烈,在中国东南沿海形成了安第斯型的大陆边缘岩浆弧,弧宽可达1 000 km,抵至南岭地区[31]。到早白垩世俯冲倾角变大且速度变慢,导致岩石圈伸展,形成了EW向佛冈-丰良张性大断裂和NE-SW向广-从左旋大断裂,诱发软流圈沿断裂上涌、地幔岩浆熔融而形成碱性岩体。

5 结 论

1)亚髻山霞石正长岩岩体出露面积约7.45 km2,岩体形成时间约134.6±8.9 Ma,地质时代为白垩纪早期,岩体内带为霞石角闪正长岩,外带为黑云角闪正长岩。

2)亚髻山霞石正长岩具有典型A1型岩套高演化花岗岩特征,ISr值0.705 33~0.707 69,εNd(t)值-1.1~-3.4, Nd的二阶段模式年龄680~910 Ma,暗示岩浆源区为上地幔-下地壳重熔型物质,其高碱特征可能与上地幔岩浆分异有关。

图8 广东亚髻山霞石正长岩岩石类型判别图解(a、b据Whalen et al.[26]; c、d据Eby[27])Fig.8 Discrimination diagram of the Yajishan nepheline-syenites

图9 广东亚髻山霞石正长岩大地构造环境Th/Hf-Ta/Hf判别图(据汪云亮等[29])Fig.9 Th/Hf vs Ta/Hf identification diagram of tectonic setting for the Yajishan nepheline-syenitesⅠ-板块发散边缘N-MORB区;Ⅱ-板块汇聚边缘(Ⅱ1大洋岛弧玄武岩区;Ⅱ2陆缘岛弧及陆缘火山弧玄武岩区);Ⅲ大洋板内洋岛、海山玄武岩区及T-MORB、E-MORB区;Ⅳ大陆板内(Ⅳ1陆内裂谷及陆缘裂谷拉斑玄武岩区;Ⅳ2陆内裂谷碱性玄武岩区;Ⅳ3大陆拉张带(或初始裂谷)玄武岩区);Ⅴ地幔热柱玄武岩区

图10  广东亚髻山霞石正长岩R1-R2图解(据Batchelor和Bowden[30])Fig.10 R1 vs R2 for the Yajishan nepheline-syenites

3)髻山霞石正长岩岩体形成于白垩纪早期古太平板块俯冲后撤诱发的陆-陆碰撞造山后拉张构造环境,这一过程对华南地区构造演化具有一定重要的地质意义

致谢:在本文写作过程中得到杨超群研究员大力帮助,在此表示衷心感谢!

参考文献:

[1]王德滋,赵广涛,邱检生.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报,1995,1(2):13-21.

WANG D Z,ZHAO G T,QIU J S.The tectonic constraint on the late Mesozoic A-type granitoids in eastern china[J].Geological Journal of China Universities,1995,1(2):13-21.

[2]王德磁.华南花岗岩研究的回顾与展望[J].高校地质学报,2004,10(3):305-314.

WANG D Z.The study of granitic rocks in south China:looking back and forward[J].Geological Journal of China Universities,2004,10(3):305-314.

[3]潘维祖.广东发现角闪霞石正长岩体[J].地质论评,1966,24(1):71.

PAN W Z.Guangdong Provincial discovered the nepheline-syenite rock[J].Gelogical Review,1966,24(1):71.

[4]肖振宇,汪礼明,杨学明,等.广东从化石岭碱性杂岩的岩石学特征及其地质意义[J].高校地质学报,1998,4(2):133-138.

XIAO Z Y,WANG L M,YANG X M,et al. Petrological characteristics of Shiling alkaline complex,Conghua, Guangdong province and its geolgical implications[J].Geological Journal of China Universities, 1998,4(2):133-138.

[5]刘昌实,陈小明,王汝成,等.广东从化方钠石正长岩矿物学特征及成因[J].矿物学报,2002,22(3):261-269.

LIU C S,CHEN X M,WANG R C,et al.Mineralogic characteristics and genesis for Shiling sodalite syenite, Nanling area, south china[J].Acta Mineralogica Sinica,2002,22(3):261-269.

[6]刘昌实, 陈小明,王汝成,等.广东从化石岭方钠石正长岩特征及其起源[J].地质论评,2003,49(1):28-40.

LIU C S,CHEN X M,WANG R C,et al. Characteristic and origin of the Shiling sodalite syenite, Conghua city Guangdong province[J].Gelogical Review,2003,49(1):28-40.

[7]包志伟,赵振华,熊小林.广东恶鸡脑碱性正长岩的地球化学及其地球动力学意义[J].地球化学,2000,29(5):462-468.

BAO Z W,ZHAO Z H,XIONG X L.Geochemistry of the Jinao alkali syenite and its geodynamic significance[J].Geochimica,2000,29(5):462-468.

[8]李宏卫,林小明,黄建桦.广东从化石岭碱性杂岩体角闪石正长岩LA-ICP-MS锆石U-Pb定年[J].地球科学前沿,2015(5):27-32.

LI H W, LIN X M, HUANG H H.LA-ICP-MS zircon U-Pb dating of hornblende syenite form Shilling alkaline complex, Conghua city, Guangdong province[J].Frontiers of Earth Science,2015(5):27-32.

[9]周玲棣,赵振华,周国富.我国一些碱性岩的同位素年代学研究[J].地球化学, 1996,25(2):164-171.

ZHOU L D, ZHAO Z H, ZHOU G F. Isotopic chronology of some alkaline rock bodies in China[J]. Geochimica, 1996,25(2):164-171.

[10]王强, 赵振华,简平,等.华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J].岩石学报,2005,21(3):795-808.

WANG Q,ZHAO Z H,JIAN P, et al. Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, south China: constraints for late-Mesozoic tectonic evolution[J].Acta Petrologica Sinica, 2005,21(3):795-808.

[11]苏扣林,丁兴,黄永贵,等.粤中早白垩世亚髻山正长杂岩体的成分分异及岩石成因[J].岩石学报,2015,31(3):829-845.

SU K L, DING X, HUANG Y G, et al. Compositional differentiation of early Cretaceous Yajishan syenitic complex and its petrogenesis[J].Acta Petrologica Sinica,2015,31(3):829-845.

[12]GOTO A,TATSUMI Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (I) [J].The Rigaku Journal,1994,11:40-59.

[13]刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素[J].地球化学,1996,25(6):552-558.

LIU Y, LIU H C, LI X H. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J].Geochimica,1996,25(6):552-558.

[14]梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值[J].地球化学,2003,32(1):91-96.

LIANG X R, WEI G J, LI X H,et al. Precise measurement of143Nd/144Nd and Sm/Nd ratios using MC-ICPMS[J]. Geochimica,2003,32(1):91-96.

[15]MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Review,1994,37:215-224.

[16]WRIGHT J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J].Geol Mag,1969,106:370-384.

[17]MANIAR P, PICCOLI P. Tectonic discrimination of granitoids[J]. Geol Soc of Amer Bull,1989,101:635-643.

[18]HOFMANN A W. Chemical differentiation of the earth: The relationship between mantle,continental crust and oceanic crust[J].Earth Planet Sci Lett,1988,90:297-314.

[19]McDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology,1995,120(3/4):223-253.

[20]SUN S S, McDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]∥ Magmatism in the ocean basins. SAUNDERS A D & NORRY M J, eds. London, United Kingdom: Geological Society of London,1989:313-345.

[21]王德滋,彭亚鸣,袁朴.福建省魁岐花岗岩的岩石学和地球化学特征及成因探讨[J].地球化学,1985(3):197-205.

WANG D Z, PENG Y M, YUAN P. Petrological and geochemical characteristics and genesis of Kuiqi granites, Fujian Province[J].Geochimica,1985(3):197-205.

[22]DING X, SUN W D, CHEN W F,et al. Multiple Mesozoic magma processes formed the 240-185 Ma composite Weishan pluton, South China: Evidence from geochronology, geochemistry, and Sr-Nd isotopes[J]. International Geology Review, doi:2014, 10.1080/00206 814.2014.905997.

[23]苏扣林.广东良口黄田埔A型花岗岩地球化学特征及大地构造意义[C]∥广东首届地质工程学术大会论文集.广州:羊城晚报出版社,2017.

[24]LOISELLE M C. Characteristics of anorogenic granite[C].Geological Society of America, 1979, Abstracts 11:468.

[25]COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982,80(2):189-200.

[26]WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95(4): 407-419.

[27]EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology,1992,20(7):641-644.

[28]洪大卫,王式洸,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),1995,25(4):418-426.

HONG D W,WANG S G, HAN B F,et al. Classification of tectonic environments and identification mark of alkaline granites[J].Science in China (Series B),1995,25(4):418-426.

[29]汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3): 413-421.

WANG Y L,ZHANG C J,XIU S Z. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J].Acta Petrologica Sinica,2001,17(3): 413-421.

[30]BONIN B, GIRET A. Contrasting roles of rock-forming minerals in alkaline ring complexes[J]. Journal of African Earth Sciences. 1985,3(1/2):41-49.

[31]ZHOU X M, LI W X. Origin of late Mesozoic igneous rocks in southeastern China: implication for lithosphere subduction and underplating of mafic magma[J].Tectonophysics,2000,326:269-287.

猜你喜欢
图解碱性花岗岩
酵母片不宜与碱性物同服
12Cr1MoV焊接接头在碱性溶液中的应力腐蚀开裂行为
花岗岩
粤北地区花岗岩型铀矿勘查模式分析
不同构造环境花岗岩类的Na2O和K2O含量变化特征
抗剥落剂TR-500S改善花岗岩混合料路用性能研究
日常生活的碱性食物
试析蒸汽锅炉碱性排污水的综合利用
图解十八届六中全会
图解天下