高度不饱和脂肪酸对水生动物生长、发育和繁殖的影响与机理

2018-03-27 00:33许友卿韩进华陈亨德钟艺文丁兆坤
水产科学 2018年2期
关键词:烯酸水生动物不饱和

许友卿,韩进华,陈亨德,钟艺文,丁兆坤

(广西大学 水产科学研究所,广西 南宁 535004)

高度不饱和脂肪酸是多不饱和脂肪酸中具有二十个碳原子以上,含3个或3个以上双键的脂肪酸[1-4],主要有花生四烯酸(C20:4n-6)、二十二碳六烯酸(C22:6n-3)和二十碳五烯酸(C20:5n-3)等[5-12]。

高度不饱和脂肪酸影响机体脂类代谢[13]、基因表达[14-15]、细胞膜功能[16]、机体免疫[17-18]及血液生理生化特性[19-20]等,对水生动物的生长、发育和繁殖发挥重要的作用。然而,对高度不饱和脂肪酸的这种影响及机理研究较少,一些有关问题亟待探讨[21]。

笔者综述了高度不饱和脂肪酸对水生动物生长、发育和繁殖的影响及其作用机理,旨在掌握高度不饱和脂肪酸影响水生动物生长、发育和繁殖的规律和调控机理,有效地利用高度不饱和脂肪酸调控、促进水生动物的生长、发育和繁殖,提高生产效率,增加水产养殖业的经济效益和社会效益。

1 高度不饱和脂肪酸对水生动物繁殖的影响

高度不饱和脂肪酸能显著促进水生动物的生殖性能。高度不饱和脂肪酸如花生四烯酸、二十二碳六烯酸和二十碳五烯酸是水生动物合成卵黄和胚胎发育所必需,在水生动物性腺成熟过程中不仅作为一种能量来源,更能为性腺的连续发育和胚胎的形态发展提供必需营养素,包括必需脂肪酸、磷脂和某些激素。高度不饱和脂肪酸可维持水生动物亲体正常性成熟,促进卵黄正常发生和胚胎发育,提高卵的孵化率[22-23]。Xu等[24]发现,日粮中添加适当比例的n-6/n-3多不饱和脂肪酸促进鲤鱼(Cyprinuscarpio)性腺发育成熟、繁殖性能和雌鲤鱼产后恢复。鱼日粮中脂肪酸的组成对成功繁殖和后代存活至关重要[25-29]。多不饱和脂肪酸是影响亲鱼繁殖性能的关键营养素[30-31]。淡水、洄游鱼类通常需要C18多不饱和脂肪酸,而海洋鱼类则需要花生四烯酸、二十碳五烯酸和二十二碳六烯酸等高度不饱和脂肪酸[29,32]。这些重要的高度不饱和脂肪酸——花生四烯酸、二十碳五烯酸和二十二碳六烯酸,被极性脂质优先结合,在配子和胚胎发育中发挥特殊作用[33]。

饲料中添加多不饱和脂肪酸对促进鱼体成熟作用显著。真鲷(Pagrusmaior)的日粮如缺乏多不饱和脂肪酸,会显著降低孵化率,增加卵和仔鱼的畸形率[34-39]。事实证明,繁殖成功依赖于日粮中n-3和 n-6多不饱和脂肪酸的水平[37-41],日粮中的n-3和 n-6多不饱和脂肪酸可以提高亲鱼的繁殖性能[37-38,42-44]。通常,受精卵含的n-3和 n-6多不饱和脂肪酸多为细胞膜磷脂,尤其是卵磷脂[45]。在鱼受精卵中,二十二碳六烯酸主要存在于磷脂酰胆碱中。在幼鱼发育过程中,二十二碳六烯酸被优先用于神经组织和视网膜的发育[46-47]。为亲鱼提供充足的n-3 和 n-6 多不饱和脂肪酸有利于胚胎和仔鱼的发育、细胞的增殖和分化[48-49]。在自身不能合成n-3和 n-6 多不饱和脂肪酸鱼类的日粮中必须添加n-3和 n-6多不饱和脂肪酸,如花生四烯酸、二十碳五烯酸和二十二碳六烯酸,或其前体,如亚油酸(LA,是花生四烯酸的前体物质)、亚麻酸(LNA,是二十碳五烯酸和二十二碳六烯酸的前体物质)[50-51]。投喂饵料鱼的Percafluviatilis和Sanderlucioperca亲鱼的受精卵和幼鱼质量高于投喂基于适宜磷脂和花生四烯酸、二十碳五烯酸和二十二碳六烯酸比例试验饲料的欧亚鲈鱼亲鱼[52]。但是,不同鱼类对多不饱和脂肪酸的需求不同,例如鲤鱼生长发育需要n-3和n-6多不饱和脂肪酸[53],莫桑比克罗非鱼(Oreochromismossambicus)需要n-6 多不饱和脂肪酸,而虹鳟(Oncorhynchusmykiss)需要n-3 多不饱和脂肪酸[25]。在欧洲鲈鱼(Dicentrarchuslabrax)繁殖、生长和发育过程中,n-6高度不饱和脂肪酸发挥重要作用[54]。饲喂高水平花生四烯酸亲鱼的卵受精率和孵化率高于投喂低水平花生四烯酸的亲鱼卵[37]。在迈耶剑尾鱼(Xiphophorusmeyer)卵母细胞和鱼苗中沉积较多花生四烯酸,表明花生四烯酸在其生殖活动中的重要性[55]。

高度不饱和脂肪酸的含量及二十二碳六烯酸/二十碳五烯酸和花生四烯酸/二十二碳六烯酸比例显著影响水生动物的生殖性能及仔鱼质量。日粮中适量二十碳五烯酸和二十二碳六烯酸有利于水生动物吸收和运输胆固醇,为合成孕酮和雌二醇提供原料,促进孕酮和雌二醇的生成[56-57]。适宜的高度不饱和脂肪酸含量及其比例(如二十二碳六烯酸/二十碳五烯酸和花生四烯酸/二十二碳六烯酸等)会显著提高水生动物的生殖性能及幼体质量[60-61]。投喂富含n-3系列脂肪酸的饲料可以显著提高螯虾(Astacusleptodactylus)亲虾的产卵量和第一阶段幼虾的质量[62]。Buen-Ursua等[63]发现,二十二碳六烯酸/二十碳五烯酸比率提高海马(Hippocampuscomes)繁殖能力的作用,比其各自的水平高低更重要。Luo等[64]发现,饲喂高比例二十二碳六烯酸/二十碳五烯酸 (1.9∶1.0)的西伯利亚鲟(Acipenserbaeri)雌亲鱼的产卵质量、繁殖力、受精率分别比饲喂低比例二十二碳六烯酸/二十碳五烯酸 (1.0∶1.9)的雌亲鱼提高40.98%、22.3%、35.6%。Kohler[65]发现,白鲈鱼(Moronechrysops)卵含n-3高度不饱和脂肪酸包括二十碳五烯酸、二十二碳六烯酸和鲱油酸较高时,孵化率也高。Yanes-Roca等[66]报道,巴西黄金鲈(Centropomusundecimalis)含较高二十二碳六烯酸的受精卵孵化率较高。

高度不饱和脂肪酸不但可提高水生动物卵子的质量,还能增加精子质量和受精率。人们通常主要关心卵子质量,却未足够关注精子质量。实际上,精子质量同样影响亲本的繁育性能[67]。草鱼(Ctenopharynodonidellus)精子中的n-6多不饱和脂肪酸主要是花生四烯酸(含量13.95%),显著高于卵子花生四烯酸含量(5.86%)[68],表明花生四烯酸影响精子的活力[69]。高度不饱和脂肪酸对雄性硬骨鱼的性成熟和精子产生均发挥重要作用[70]。Asturiano等[71]用湿杂鱼和2种富含多不饱和脂肪酸的北半球鱼油、金枪鱼轨道油制备的颗粒商业饲料,分别投喂Dicentrarchuslabrax的亲鱼作比较,发现饲喂北半球鱼油和金枪鱼轨道油的雄亲鱼排精历时比饲喂湿杂鱼雄性亲鱼更长,排出的精液体积和精子密度都显著高于后者,但各组精子的质量和运动能力没有差异。尽管受精后3 h和24 h,它们的受精率相似,均在88%~90%,但是卵受精后48 h和72 h,投喂金枪鱼轨道油的胚胎和幼体成活率显著增高。于受精后48 h的胚胎和幼体成活率分别为:投喂北半球鱼油者13.9%,金枪鱼轨道油者20.9%,湿杂鱼者1.0%;于受精后72 h的胚胎和幼体成活率分别为,投喂北半球鱼油者15.5%,金枪鱼轨道油者20.6%,湿杂鱼者1.2%。

然而,Berenjestanaki等[72]报道,给三斑毛腹鱼(Trichopodustrichopterus)亲鱼投喂二十碳五烯酸、 二十二碳六烯酸等含量高的鱼油,对产卵的质量参数产生负面影响。

2 高度不饱和脂肪酸对水生动物发育的影响

高度不饱和脂肪酸对早期胚胎发育的影响很大。Araújo等[58]发现,摄食添加玉米油饲料的雌斑马鱼(Brachydaniorerio)亲鱼,其卵巢中花生四烯酸的比例(1.48 0.44%)(P= 0.015)高于饲喂其他饲料的雌鱼(P= 0.0069),受精后8~9 h时受精卵发育较快,说明花生四烯酸可能是胚胎早期发育的调节剂,但是花生四烯酸的效应机制尚需研究。

高度不饱和脂肪酸对水生动物幼体的生长发育,尤其对骨骼发育及相关基因的表达影响显著。研究发现,投喂缺乏二十二碳六烯酸饲料的金头鲷(Sparusaurata)幼鱼体型较小,膀胱结石、脊椎前弯和后弯症的发病率高,而脊椎矿化的数量最少。增加饲料中二十二碳六烯酸的含量能增强幼鱼的生长,并显著提高类胰岛素生长因子-Ⅰ基因的表达[73]。然而,二十二碳六烯酸水平增至5%时,幼鱼组织脂质氧化程度增加,颅软骨内成骨、中轴骨骼的血液和椎弓畸形率增加,提高饲料中二十二碳六烯酸的水平,显著增加了氧化的风险,随之自由基和有毒的氧化混合物(脂肪酸过氧化物、脂肪酸羟基和醛)增加[74],自由基和氧化反应产物可以引起哺乳动物骨细胞凋亡。更奇的是,提高饲料中二十二碳六烯酸水平时,也增加了幼鱼的氧化状态与幼鱼的骨骼畸形[73]。

然而,Hernández-Cruz等[75]报道,提高金头鲷饲料中二十二碳六烯酸的水平,既不影响骨骼畸形,也不影响骨标志(如与运行相关的转录因子2或碱性磷酸酶)基因的表达。

3 高度不饱和脂肪酸对水生动物生长的影响

n-3高度不饱和脂肪酸,尤其是二十二碳六烯酸和二十碳五烯酸,对于水生动物的生长和生理功能非常重要[76-80]。然而,有些水生动物不能合成或合成n-3 高度不饱和脂肪酸的能力有限,摄食是其获取n-3高度不饱和脂肪酸最有效和最主要的途径[81]。Hu等[82]研究发现,饲料中n-3高度不饱和脂肪酸水平显著影响三疣梭子蟹(Portunustrituberculatus)的质量增加量。但是,不同种类和比例的n-3高度不饱和脂肪酸影响相异,如二十二碳六烯酸对于促进仔鱼生长和发育效果比二十碳五烯酸效果更好[83-84]。用高比例二十二碳六烯酸/二十碳五烯酸 (1.9∶1.0)饲料投喂西伯利亚鲟雌鱼所孵化出35日龄稚鱼的体长较长,体质量较大,质量增加率及成活率较高,这些指标均比投喂低比例二十二碳六烯酸/二十碳五烯酸 (1.0∶1.9)的雌鱼所孵化的稚鱼更好[64]。

不同动物对n-3高度不饱和脂肪酸比例的响应相异。Xu 等[85]用6种不同二十二碳六烯酸/二十碳五烯酸(0.55、1.04、1.53、2.08、2.44)的饲料投喂日本尖吻鲈(Lateolabraxjaponicus),发现饲料中二十二碳六烯酸/二十碳五烯酸比率在0.55~2.0时,鱼的终体质量和特定生长率随着二十二碳六烯酸/二十碳五烯酸比率的增加而显著增加,但比率高于2.0后则开始下降。比较用4种二十二碳六烯酸/二十碳五烯酸(0.70、0.84、1.06和 1.25)比例的饲料投喂三疣梭子蟹的效果,发现投喂二十二碳六烯酸/二十碳五烯酸为0.84的三疣梭子蟹终体质量和质量增加量最高,比投喂二十二碳六烯酸/二十碳五烯酸比例为1.06、1.25时显著提高,但与投喂二十二碳六烯酸/二十碳五烯酸为0.7的蟹比较,无显著差异[86]。Xu 等[87]发现,投喂不同二十二碳六烯酸/二十碳五烯酸比例的饲料时军曹鱼(Rachycentroncanadum)的生长无显著影响。

4 高度不饱和脂肪酸对水生动物生长、发育和繁殖的影响的机理

4.1 高度不饱和脂肪酸通过基因和受体影响水生动物生长、发育和繁殖

高度不饱和脂肪酸通过受体和基因表达而发挥作用。过氧化物酶体增殖物激活受体(PPARs)在介导高度不饱和脂肪酸影响代谢、生长、发育和繁殖中发挥重要作用。n-3 高度不饱和脂肪酸是过氧化物酶体增殖物激活受体的配体,过氧化物酶体增殖物激活受体可以调控大量与脂质代谢相关基因的表达。Kjr等[88]发现,二十二碳六烯酸可增强大西洋鲑(Salmosalar)过氧化物酶体增殖物激活受体α基因的表达。肝 X 受体是一种转录调控因子[89]。高度不饱和脂肪酸可调控肝 X 受体的表达[90]。

4.2 高度不饱和脂肪酸通过影响酶的表达、活性和激素来调控水生动物代谢、生长、发育和繁殖

高度不饱和脂肪酸可影响酶的表达及活性来调节水生动物代谢、生长、发育和繁殖。高度不饱和脂肪酸影响脂蛋白脂肪酶的表达及酶活性,进而影响机体脂肪代谢[91]及水生动物代谢、生长、发育和繁殖。研究表明,二十碳五烯酸能调节卵巢中雌二醇的生成[45]。饲料中含适量二十碳五烯酸和二十二碳六烯酸可促进孕酮和雌二醇的生成[56-57]。但过量的二十碳五烯酸和二十二碳六烯酸能够抑制金鱼类固醇类激素的合成,抑制卵黄合成[46,59]。

[1] Sayanova O V,Napier J A.Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants[J].Phytochemistry,2004,65(2):147-158.

[2] 许友卿,钟鸣,丁兆坤.多不饱和脂肪酸对鱼饲料转化率的影响及其机理[J].饲料工业,2010,31(8):46-50.

[3] 丁兆坤,麻艳群,许友卿.合成高度不饱和脂肪酸去饱和酶的分子生物学研究Ⅰ.结构与功能[J].中国生物工程杂志,2008(s1):196-200.

[4] 丁兆坤,麻艳群,许友卿.合成高度不饱和脂肪酸去饱和酶的分子生物学研究Ⅱ.克隆、表达与功能分析[J].中国生物工程杂志,2008(s1):201-214.

[5] 许友卿,郑一民,丁兆坤.合成高度不饱和脂肪酸△6去饱和酶研究的回顾与前瞻[J].饲料工业,2008,29(14):41-44.

[6] 丁兆坤,刘亮,许友卿.二十碳四烯酸研究[J].水产科学,2007,26(12): 684-688.

[7] 丁兆坤,刘亮,许友卿.花生四烯酸研究[J].中国科技论文,2007,2(6):410-416.

[8] 许友卿,丁兆坤.用基因工程方法研制廿二碳六烯酸[J].中国生物工程杂志,2005,25(5):22-25.

[9] 许友卿,张海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸研究进展(1)[J].生物学通报,2007,42(11):13-15.

[10] 许友卿,张海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸研究进展(2)[J].生物学通报,2007,42(12):3-5.

[11] 许友卿,张海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸的代谢研究[J].水产科学,2007,26(10):580-583.

[12] 许友卿,郑一民,丁兆坤.军曹鱼△6脂肪酸去饱和酶的cDNA序列克隆与基因表达[J].中国水产科学,2010,17(6):1183-1191.

[13] Lei C X,Ji H,Zhang J L,et al.Effects of dietary DHA/EPA ratios on fatty acid composition,lipid metabolism-related enzyme activity,and gene expression of juvenile grass carp,Ctenopharyngodonidellus[J].Journal of the World Aquaculture Society,2016,47(2):287-296.

[14] 许友卿,逄劭楠,丁兆坤.多不饱和脂肪酸对基因表达的影响及其机理[J].饲料工业,2011,32(2):56-60.

[15] 许友卿,郑一民,丁兆坤.营养素对水生动物生长发育相关基因表达的影响及机理研究[J].饲料工业,2015(12):1-7.

[16] Ding Z K,Xu Y Q,Zhang H,et al.No significant effect of additive ratios of docosahexaenoic acid to eicosapentaenoic acid on the survival and growth of cobia (Rachycentroncanadum) juvenile[J].Aquaculture Nutrition,2009,15(3):254-261.

[17] Yu H,Gao Q,Dong S,et al.Effects of dietaryn-3 highly unsaturated fatty acids (HUFAs) on growth,fatty acid profiles,antioxidant capacity and immunity of sea cucumberApostichopusjaponicus(Selenka)[J].Fish & Shellfish Immunology,2016(54):211-219.

[18] 许友卿,李伟峰,丁兆坤.多不饱和脂肪酸对鱼类免疫与成活的影响及机理[J].动物营养学报,2010,22(3):551-556.

[19] Ma J J,Wang J,Sun J,et al.Effect of dietary DHA to EPA ratios on growth performance,body composition and serum physiological parameters in juvenilePlatichthysstellatus[J].Journal of Fisheries of China,2014,38(2):244-256.

[20] Li C,Liu P,Ji H,et al.Dietaryn-3 highly unsaturated fatty acids affect the biological and serum biochemical parameters,tissue fatty acid profile,antioxidation status and expression of lipid-metabolism-related genes in grass carp,Ctenopharyngodonidellus[J].Aquaculture Nutrition,2015,21(3):373-383.

[21] Abdul H,Yusli W,Batu D T F L,et al.Changes in proximate and fatty acids of the eggs during embryo development in the blue swimming crab,Portunuspelagicus(Linnaeus 1758) at Lasongko Bay,Southeast Sulawesi,Indonesia[J].Indian Journal of Science & Technology,2015,8(6):501-509.

[22] Callan C K,Laidley C W,Kling L J,et al.The effects of dietary HUFA level on flame angelfish (Centropygeloriculus) spawning,egg quality and early larval characteristics[J].Aquaculture Research,2014,45(7):1176-1186.

[23] Parma L,Bonaldo A,Pirini M,et al.Fatty acid composition of eggs and its relationships to egg and larval viability from domesticated common sole (Soleasolea) breeders[J].Reproduction in Domestic Animals,2014,50(2):186-194.

[24] Xu Y Q,Li W F,Ding Z K.Polyunsaturated fatty acid supplements could considerably promote the breeding performance of carp[J].Eur J Lipid Sci Technol,2016(118):1-8.

[25] Furuita H,Yamamoto T,Shima T,et al.Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounderParalichthysolivaceus[J].Aquaculture,2003,220(1/4):725-735.

[26] Mazorra C,Bruce M,Bell J G,et al.Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossushippoglossus)[J].Aquaculture,2003,227(1/4):21-33.

[27] Meunpol O,Meejing P,Piyatiratitivorakul S.Maturation diet based on fatty acid content for malePenaeusmonodon(Fabricius) broodstock[J].Aquaculture Research,2005,36(12):1216-1225.

[28] Pérez M J,Rodríguez C,Cejas J R,et al.Lipid and fatty acid content in wild white seabream (Diplodussargus) broodfish at different stages of the reproductive cycle[J].Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology,2007,146(2):187-196.

[29] Tocher D R,Dabrowski K,Hardy R.Fatty acid requirements in ontogeny of marine and freshwater fish[J].Aquaculture Research,2010,41(5):717-732.

[30] Watanabe T,Vassalloagius R.Broodstock nutrition research on marine finfish in Japan[J].Aquaculture,2003,227(3):35-61.

[31] Bell J G,Sargent J R.Arachidonic acid in aquaculture feeds: current status and future opportunities[J].Aquaculture,2003,218(1/4):491-499.

[32] Ahlgren G,Vrede T,Goedkoop W.Fatty Acid Ratios in Freshwater Fish,Zooplankton and Zoobenthos - Are There Specific Optima?[M].Lipids in Aquatic Ecosystems.Germany: Springer,2009:147-178.

[33] Soudant P,Marty Y,Moal J,et al.Effect of food fatty acid and sterol quality onPectenkaximusgonad composition and reproduction process[J].Aquaculture,1996,143(3/4):361-378.

[34] Watanabe T,Arakawa T,Kitajima C,et al.Effect of nutritional quality of broodstock diets on reproduction of red sea bream[J].Nippon Suisan Gakk,1984,50(3):495-501.

[35] Watanabe T,Ohhashi S,Itoh A,et al.Effect of nutritional composition of diets on chemical components of red sea bream broodstock and egg produced[J].Nippon Suisan Gakk,1984,50(3):503-515.

[36] Rodríguez C,Cejas J R,Martín M V,et al.Influence ofn-3 highly unsaturated fatty acid deficiency on the lipid composition of broodstock gilthead seabream (SparusaurataL.) and on egg quality[J].Fish Physiology and Biochemistry,1998,18(2):177-187.

[37] Røjbek M C,Støttrup J G,Jacobsen C,et al.Effects of dietary fatty acids on the production and quality of eggs and larvae of Atlantic cod (GadusmorhuaL.)[J].Aquaculture Nutrition,2014,20(6):654-666.

[38] LiangM Q,Lu Q K,Qian C,et al.Effects of dietary n-3 to n-6 fatty acid ratios on spawning performance and larval quality in tongue soleCynoglossussemilaevis[J].Aquaculture Nutrition,2013,20(1):79-89.

[39] Furuita H,Tanaka H,Yamamoto T,et al.Effects of high levels ofn-3 HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounderParalichthysolivaceus[J].Aquaculture,2002,210(1):323-333.

[40] Li Y Y,Chen W Z,Sun Z W,et al.Effects ofn-3 HUFA content in broodstock diet on spawning performance and fatty acid composition of eggs and larvae inPlectorhynchuscinctus[J].Aquaculture,2005,245(1/4):263-272.

[41] Wu X,Chang G,Cheng Y,et al.Effects of dietary phospholipid and highly unsaturated fatty acid on the gonadal development,tissue proximate composition,lipid class and fatty acid composition of precocious Chinese mitten crab,Eriocheirsinensis[J].Aquaculture Nutrition,2010,16(1):25-36.

[42] Bell J G,Frandale B M,Bruce M P,et al.Effect of broodstock dietary lipid on fatty acid compositions of eggs from sea bass (Dicentrarchuslabrax)[J].Aquaculture,1997,149(1/2):107-119.

[43] Navas J M,Bruce M,Thrush M,et al.The impact of seasonal alternation in the lipid composition of broodstock diets on egg quality in the European sea bass[J].Journal of Fish Biology,1997,51(4):760-773.

[44] Vassallo-Agius R,Watanabe T,Yoshizaki G,et al.Quality of eggs and spermatozoa of rainbow trout fed an n-3 essential fatty acid-deficient diet and its effects on the lipid and fatty acid components of eggs,semen and livers in fish[J].Science,2001,67(5):818-827.

[45] 许友卿,庄丽,丁兆坤.多不饱和脂肪酸对海水仔稚鱼生长发育的影响及机理[J].饲料工业,2010,31(14):13-18.

[46] Tocher D R,Harvie,D G.Fatty acids composition of the major phosphogleygerides from fish neural tissues: (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmogairdneri) and cod (Gadusmorhua) brains and retinas[J].Fish Physiology and Biochemistry,1988,5(4):229-239.

[47] Bell M V,Dick J.Molecular species composition of the major diacyl glycerophospholipids from muscle,liver,retina and brain of cod (Gadusmorhua)[J].Lipids,1991,26(8):565-573.

[48] Aarab L,Pérez-Camacho A,Viera-Toledo M D P,et al.Embryonic development and influence of egg density on early veliger larvae and effects of dietary microalgae on growth of brown musselPernaperna(L.1758) larvae under laboratory conditions[J].Aquaculture International,2013,21(5):1065-1076.

[49] Finstad H S,Kolset S O,Holme J A,et al.Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells[J].Blood,1994,84(11):3799-3809.

[50] Bell M V,Henderson R J,Sargent J R.The role of polyunsaturated fatty acids in fish[J].Comparative Biochemistry & Physiology B Comparative Biochemistry,1986,83(4):711-719.

[51] Sargent J.Origins and functions of egg lipids: nutritional implications[M].Bromage N R,Roberts R J.Broodstock Management and Egg and Larval Quality.Oxford,UK: Blackwell,1995:353-372.

[52] Kestemont P,Henrotte E.Nutritional Requirements and Feeding of Broodstock and Early Life Stages of Eurasian Perch and Pikeperch[M].Biology and Culture of Percid Fishes.Netherlands: Springer,2015,539-564.

[53] Takeuchi T.Essential fatty acid requirements in carp[J].Archives of Animal Nutrition,1996,49(1):23-32.

[54] Bruce M,Oyen F,Bell G,et al.Development of broodstock diets for the European sea bass (Dicentrarchuslabrax) with special emphasis on the importance ofn-3 andn-6 highly unsaturated fatty acid to reproductive performance[J].Aquaculture,1999,177(1/4):85-97.

[55] Ling S,Kuah M K,Muhammad T S T,et al.Effect of dietary HUFA on reproductive performance,tissue fatty acid profile and desaturase and elongase mRNAs in female swordtailXiphophorushelleri[J].Aquaculture,2006,261(1):204-214.

[56] Ganga R,Bell J G,Montero D,et al.Effect of dietary lipids on plasma fatty acid profiles and prostaglandin and leptin production in gilthead seabream (Sparusaurata)[J].Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology,2005,142(4):410-418.

[57] Wouters R,Piguave X,Bastidas L,et al.Ovarian maturation and haemolymphatic vitellogenin concentration of Pacific white shrimpLitopenaeusvannamei(Boone) fed increasing levels of total dietary lipids and HUFA[J].Aquaculture Research,2001,32(7):573-582.

[58] Araújo F G,Costa D V,Machado M R F,et al.Dietary oils influence ovary and carcass composition and embryonic development of zebrafish[J].Aquaculture Nutrition,2016,22(3):11-16.

[59] Wade M G,Van d K G,Gerrits M F,et al.Release and steroidogenic actions of polyunsaturated fatty acids in the goldfish testis[J].Biology of Reproduction,1994,51(1):131-139.

[60] Wu X,Cheng Y,Sui L,et al.Effect of dietary supplementation of phospholipids and highly unsaturated fatty acids on reproductive performance and offspring quality of Chinese mitten crab,Eriocheirsinensis(H.Milne-Edwards),female broodstock[J].Aquaculture,2007,273(4):602-613.

[61] 艾春香,陈立侨,温小波,等.维生素E、C和HUFA交互作用对中华绒螯蟹生殖性能的影响[J].水产学报,2002,26(6):533-541.

[62] Muzaffer M H,Kenan K,Aye G,et al.The effects of dietaryn-3 series fatty acid on the fatty acid composition,cholesterol and fat-soluble vitamins of pleopodal eggs and stage 1 juveniles in a freshwater crayfish,Astacusleptodactylus(Eschscholtz) [J].Aquaculture,2012,356/357(4):310-316.

[63] Buen-Ursua S M A,Azuma T,Arai K,et al.Improved reproductive performance of tiger tail seahorse,Hippocampuscomes,by mysid shrimp fed singly or in combination with other natural food[J].Aquaculture International,2014,23(1):29-43.

[64] Luo L,Ai L,Li T,et a1.The impact of dietary DHA/EPA ratio on spawning performance,egg and offspring quality in Siberian sturgeon (Acipenserbaeri)[J].Aquaculture,2015,437(4):140-145.

[65] Kohler C C.Effects of dietary lipid and fatty acids on white bass reproductive performance,egg hatchability,and overall quality of progeny[J].North American Journal of Aquaculture,2006,68(2):141-150.

[66] Yanes-Roca C,Rhody N,Nystrom M,et al.Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomusundecimalis)[J].Aquaculture,2009,287(3/4):335-340.

[67] Sarosiek B,Glogowski J,Cejko B I,et al.Inhibition of beta-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of rainbow trout (Oncorhynchusmykiss)and Siberian sturgeon(Acipenserbaerii) [J].Theriogenology,2014,81(5):723-732.

[69] Franz L,Nabil M,Marya M N,et al.Fatty acids of rainbow trout (Oncorhynchusmykiss) semen: composition and effects on sperm functionality[J].Aquaculture,2009,298(1/2):118-124.

[70] Baeza R,Mazzeo I,Vílchez M C,et al.Effect of thermal regime on fatty acid dynamics in male European eels (Anguillaanguilla) during hormonally-induced spermatogenesis[J].Aquaculture,2014,430(2):86-97.

[71] Asturiano J F,Sorbera L A,Carrillo M,et al.Reproductive performance in male European sea bass (Dicentrarchuslabrax,L.) fed two PUFA-enriched experimental diets: a comparison with males fed a wet diet[J].Aquaculture,2001,194(1):173-190.

[72] Berenjestanaki S S,Fereidouni A E,Ouraji H,et al.Influence of dietary lipid sources on growth,reproductive performance and fatty acid compositions of muscle and egg in three-spot gourami (Trichopodustrichopterus) (Pallas,1770)[J].Aquaculture Nutrition,2014,20(5):494-504.

[73] Izquierdo M S,Scolamacchia M,Betancor M,et al.Effects of dietary DHA and α-tocopherol on bone development,early mineralisation and oxidative stress inSparusaurata(Linnaeus,1758) larvae[J].British Journal of Nutrition,2013,109(10):1796-1805.

[74] Izquierdo M S,Socorro J,Arantzamendi L,et al.Recent advances in lipid nutrition in fish larvae[J].Fish Physiology and Biochemistry,2000,22(2):97-107.

[75] Hernández-Cruz C M,Mesa-Rodríguez A,Betancor M,et al.Growth performance and gene expression in gilthead sea bream (Sparusaurata) fed microdiets with high docosahexaenoic acid and antioxidant levels[J].Aquaculture Nutrition,2015,21(6):881-891.

[76] Glencross B D.Exploring the nutritional demand for essential fatty acids by aquaculture species[J].Reviews in Aquaculture,2009,1(2):71-124.

[77] Lee S M,Cho S H.Influences of dietary fatty acid profile on growth,body composition and blood chemistry in juvenile fat cod (HexagrammosotakiiJordan et Starks)[J].Aquaculture Nutrition,2009,15(1):19-28.

[78] Liao M,Ren T,Chen W,et al.Optimum level of dietary n-3 highly unsaturated fatty acids for juvenile sea cucumber,Apostichopusjaponicus[J].Journal of the World Aquaculture Society,2015,46(6):642-649.

[79] Montero D,Socorro J,Tort L,et al.Glomerulonephritis and immunosuppression associated with dietary essential fatty acid deficiency in gilthead sea bream,SparusaurataL.juveniles[J].Journal of Fish Diseases,2004,27(5):297-306.

[80] Skalli A,Robin J H.Requirement of n-3 long chain polyunsaturated fatty acids for European sea bass (Dicentrarchuslabrax) juveniles: growth and fatty acid composition[J].Aquaculture,2004,240(1/4):399-415.

[81] Xu X L,Ji W J,Castell J D,et al.Essential fatty acid requirement of the Chinese prawn,Penaeuschinensis[J].Aquaculture,1994,127(1):29-40.

[82] Hu S,Wang J,Han T,et al.Effects of dietary n-3 HUFA levels on growth performance,feed utilization and tissue fatty acid composition of juvenile swimming crab(Portunustrituberculatus)[J].Feed Industry,2015,36(8):18-25.

[83] Ibeas C,Cejas J R,Fores R,et al.Influence of eicosapentaenoic to docosahexaenoic acid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparusaurata) juveniles[J].Aquaculture,1997,150(1):91-102.

[84] Sofia M,Gabriel M,Aurelio O,et al.Expression of fatty acyl desaturase and elongase genes,and evolution of DHA:EPA ratio during development of unfed larvae of Atlantic bluefin tuna (ThunnusthynnusL.)[J].Aquaculture,2011,313(1/4):129-139.

[85] Xu H,Wang J,Mai K,et al.Dietary docosahexaenoic acid to eicosapentaenoic acid (DHA/EPA) ratio influenced growth performance,immune response,stress resistance and tissue fatty acid composition of juvenile Japanese seabass,Lateolabraxjaponicus(Cuvier)[J].Aquaculture Research,2016,47(3):741-757.

[86] Hu S,Wang J,Han T,et al.Effects of dietary DHA/EPA ratios on growth performance,survival and fatty acid composition of juvenile swimming crab (Portunustrituberculatus)[J].Aquaculture Research,2017,48(3):1291-1301.

[87] Xu Y,Ding Z,Zhang H,et al.Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth,nucleic acid and fatty acids of juvenile cobia (Rachycentroncanadum)[J].Lipids,2009,44(12):1091-1104.

[89] Aranda A,Pascual A.Nuclear hormone receptors and gene expression[J].Physiological Reviews,2001,81(3):1269-1304.

[90] 李超,刘品,曹艳姿,等.草鱼 LXRα 基因的克隆及表达研究[J].西北农林科技大学学报:自然科学版,2014,42(6):1-9.

[91] Ma J,Wang J,Zhang D,et al.Estimation of optimum docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) for juvenile starry flounder,Platichthysstellatus[J].Aquaculture,2014,433(1):105-114.

猜你喜欢
烯酸水生动物不饱和
浏阳市外来入侵水生动物风险预警与防控
国家水生动物疫病监测计划启动
柬埔寨可出口四类食用水生动物至中国市场
母性的Ω-3多不饱和脂肪酸或能降低子女患Ⅰ型糖尿病的风险
二十二碳五烯酸甲酯标准样品研制
4种狗母鱼科鱼类肌肉脂肪酸分析
区别认识2019新型冠状病毒与水生动物病毒
豫南茶树种质资源籽实脂肪含量及脂肪酸组成分析
母源性的Ω-3多不饱和脂肪酸或能降低子女患Ⅰ型糖尿病的风险
Teens Eating Better and Getting Healthier