龙瀛,欧阳瑶,张婧
(遵义医学院附属医院,贵州遵义563000)
慢性阻塞性肺疾病(以下称慢阻肺)是以持续呼吸系统症状及气流受限为特征的慢性疾病。目前认为,气道和肺部炎症、氧化/抗氧化失衡和蛋白酶/抗蛋白酶失衡是其主要发病机制。除此之外,自主神经功能失调、营养不良、吸烟、气温变化等可能亦参与慢阻肺的发生、发展。气道和肺实质的慢性炎症是慢阻肺的特征性改变,吞噬细胞、T细胞、中性粒细胞等多种炎症细胞均参与其发病过程。炎症细胞被激活后,释放多种炎性介质,引起气道和肺实质的异常炎症反应,破坏肺结构,导致外周气道、肺实质的炎症和水肿,黏液过度分泌和纤维化,引起气道狭窄,气流阻力增加,最终导致病情恶化[3,4]。近年研究认为,慢阻肺还是一种自身免疫性疾病[5,6],T细胞介导的免疫应答在慢阻肺的发病过程中起关键作用[7,8]。目前慢阻肺免疫发病机制的研究热点主要涉及CD4+T细胞介导的免疫应答,特别是辅助性T细胞17(Th17)、调节性T细胞(Treg)[9,10]。高迁移率族蛋白1(HMGB1)拥有诸多生物学功能,与炎症反应、细胞凋亡等关系密切,是一种重要的晚期炎症介质,在不同炎症反应中均有表达。本研究对Th17/Treg及高迁移率族蛋白1(HMGB1)在慢阻肺中作用的研究进展作一综述。
Th17是CD4+T淋巴细胞的一个亚系,是一类能够诱导中性粒细胞聚合的前炎性细胞因子,并可催化其他细胞生成炎症因子,促进炎症因子动员、募集及活化,从而介导炎症反应,在自身免疫系统中有着十分关键的作用。Th17可生成IL-17A、IL-17F,在诱导趋化因子、促炎因子释放之后,可直接导致组织细胞受损。Th17主要通过产生IL-17,开始启动并逐步放大免疫反应,在较多慢性炎症性疾病发病过程中起到极为关键的作用,并可参与自身免疫性疾病的发病[11,12]。在慢阻肺中,有许多细胞参与其病理生理过程,其中最重要的是中性粒细胞、巨噬细胞和CD4+CD8+T细胞,中性粒细胞迁移到炎症区域主要是通过CD4+Th17相关的细胞因子介导,已经证实,IL-17A、IL-17F和IL-22可诱导气道上皮细胞分泌CXCL8、CXCL1、CXCL5、G-CSF和GM-CSF[13]。Vargas-Rojas等[14]研究表明,慢阻肺患者外周血 Th17细胞较健康者增多,细胞数量与肺功能呈负相关关系,伴随气流受限程度加重而增加。与健康者相比,慢阻肺患者支气管黏膜下层IL-17A、IL-17F表达明显升高,提示 Th17细胞可直接参与慢阻肺的发生、发展和支气管组织重组[14]。同样,小鼠长期暴露于香烟烟雾后肺组织内IL-17表达明显升高[15],同时其肺上皮细胞所释放的IL-17可引起与慢阻肺相似的肺部严重感染。Chu等[16]研究表明,慢阻肺患者Th17细胞的转录因子维甲酸相关孤核受体γt(RORγt)表达升高。上述研究显示,Th17细胞和对应细胞因子在慢阻肺的发生、发展中具有极为重要的作用。
相反,Treg是一种拥有抑制作用的T细胞亚群,能抑制潜在的、可被激活为效应细胞的自身反应性T细胞,促进免疫系统获得免疫耐受,在控制自身免疫反应中发挥重要作用[17]。Treg对机体过度活跃的免疫反应提供必要的保护,并在慢性炎症中产生和诱导细胞因子。Treg生成减少或功能缺陷将导致自身免疫性疾病[18]。研究发现,肺气肿及慢阻肺患者较健康志愿者Treg数量减少[19];慢阻肺非吸烟患者Treg数量少于吸烟患者[20]。但在慢阻肺患者中Treg的免疫抑制作用仍存在争议。有报道,长时间暴露于烟雾环境中会导致气道中Treg数量增多[21];其在稳定期慢阻肺患者体内数量远高于健康者[22];与不吸烟者比较,慢阻肺吸烟患者小气道中Treg特异性转录因子数量减少,而大气道中Treg数量增多[23]。可见,与两者在分化过程中相互抑制,功能上相互拮抗,两者之间的平衡对于维持体内免疫内环境平衡起重要作用[24],一旦失衡,即可导致多种自身免疫性疾病发生[25]。在慢阻肺小鼠模型体内Th17及其相关的细胞因子(IL-17A、IL-6和IL -23)显著增多,而Treg及其相关的细胞因子(IL-10)则显著减少[25]。并且在慢阻肺小鼠模型中Th17的转录因子RORγt表达亦增高,Treg的转录因子Foxp3表达减少[26]。本课题组前期研究表明,慢阻肺小鼠模型外周血、BALF及肺组织中Th17的百分比高于健康小鼠,而Treg的百分比则低于健康小鼠。慢阻肺急性加重期和稳定期患者RORγt表达增加,与病情严重程度表现出线性关系,并且与肺功能呈负相关关系[27]。以上研究提示,Th17/Treg失衡可参与慢阻肺的免疫发病机制。
HMGB1是一类拥有促炎功能的核内非组蛋白,由A盒(A-box)、B盒(B-box)和C端尾部3个结构域组成。HMGB1能够经由活化以后的免疫细胞分泌到细胞外,也可由坏死的细胞释放,之后转移到炎症处,与有关受体,如Toll样受体2(TLR2)、TLR4等结合促进炎性细胞因子生成并介导下游炎症反应[28]。研究表明,HMGB1信号参与脓毒症、肿瘤、关节炎等疾病的发生[29~31];吸烟者和慢阻肺患者血浆中HMGB1水平升高。慢阻肺患者血浆HMGB1水平显著高于不吸烟者及吸烟无慢阻肺者,且与肺功能显著相关[32,33]。Kanazawa等[34]研究发现,慢阻肺吸烟患者气道HMGB1表达显著高于非吸烟者,且HMGB1表达与气流堵塞密切联系。Ferhani等[33]报道,慢阻肺患者支气管活检和肺组织切片HMGB1表达明显高于健康吸烟者。研究发现,慢阻肺患者气道上皮细胞和黏膜下层细胞HMGB1表达明显升高[34];慢阻肺患者痰液HMGB1水平升高且与慢阻肺的严重程度呈线性关系;血液中HMGB1水平亦升高[35];HMGB1表达与慢阻肺炎症和病理改变的严重程度存在一定正相关关系[36]。上述研究结果提示,HMGB1可能通过与多种炎症介质相互作用而放大炎症反应,从而参与慢阻肺的发病。
有研究表明,HMGB1能够通过与晚期糖基化终末产物受体(RAGE)结合而参与慢阻肺的炎症反应[37],但其具体机制尚不完全明确。RAGE是细胞表面受体的免疫球蛋白超级家族一员,能识别病原体和宿主的内源性配体,以启动对组织损伤、感染和炎症的免疫反应。尽管在肺生理学和病理生理学中RAGE的作用尚不清楚,但最近的全基因组关联研究已经将RAGE基因多态性与气流阻塞联系起来[38]。研究发现,RAGE在慢阻肺患者气道上皮平滑肌高表达,且与HMGB1一同定位,而在正常机体中则没有这种情况[39]。Th17和Treg均表达RAGE,故HMGB1可能与这两种细胞上的RAGE相互作用来调节其平衡。HMGB1与一些免疫炎症性疾病中T细胞介导的免疫失调有关。如在小鼠急性移植排斥反应模型中发现,HMGB1可诱导同种反应性T 细胞产生IL-17[40]。此外,在慢性乙型肝炎患者外周血中RORγt表达升高,Foxp3表达减少,而且RORγt/Foxp3失衡与HMGB1表达增加有关,通过抗HMGB1抗体抑制HMGB1表达可使RORγt表达降低而Foxp3表达增加,从而调节这种失衡;HMGB1 能通过TLR4-IL-6 轴来调节慢性乙型肝炎患者Th17/Treg 平衡[41]。有资料显示,哮喘小鼠HMGB1浓度和细胞数量均较对照组明显升高,重组高迁移率族蛋白1可诱导DCs分泌IL-23,从而启动哮喘小鼠Th17细胞应答,并通过体内外实验证实,抑制HMGB1表达可调控这种免疫失调[42]。上述研究提示,在这些疾病的发病机制中Th17/Treg失衡与HMGB1表达有关。
综上所述,在慢阻肺的发病机制中HMGB1可导致Th17/Treg失衡,进而导致慢阻肺的发生、发展。抗HMGB1抗体可抑制HMGB1表达,继而使RORγt表达降低、Foxp3表达增加,从而调节Th17/Treg失衡。
参考文献:
[1] Vogelmeier CF,Criner GJ,Martinez FJ,et al. Global strategy for diagnosis,management and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary[J]. Respirology,2017,22(3):575-601.
[2] Miravitlles M. Cough and sputum production as risk factors for poor outcomes in patients with COPD[J]. Respir Med,2011,105(8):1118-1128.
[3] 孙沛,丁逸鹏 慢性阻塞性肺疾病危险因素及发病机理研究进展[J].海南医学,2015,26(9):1324-1327.
[4] Nikoletta R,Antonia K,Nikolaos G,et al. Inflammation and immune response in COPD: where do we stand[J]. Mediators Inflamm,2013,2013:413735.
[5] Jin Y,Wan Y,Chen G,et al. Treg/IL-17 ratio and Treg differentiation in patients with COPD[J]. PLoS One,2014,9(10):e111044.
[6] Lugade AA,Bogner PN,Thatcher TH,et al. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection[J]. J Immunol,2014,192(11):5226-35.
[7] Chiappori A,Folli C,Balbi F,et al. CD4+CD25 high CD127-regulatory T-cells in COPD: smoke and drugs effect[J]. World Allergy Organ J,2016,9(1):1-7.
[8] Duan MC,Zhang JQ,Liang Y,et al. Infiltration of IL-17-producing T Cells and treg cells in a mouse model of smoke-induced emphysema[J]. Inflammation,2016,39(4):1334-1344.
[9] Tan DB,Fernandez S,Price P,et al. Impaired function of regulatory T-cells in patients with chronicobstructive pulmonary disease (COPD)[J]. Immunobiology,2014,219(12):975-979.
[10] Li XN,Pan X,Qiu D. Imbalances of Th17 and Treg cells and their respective cytokines in COPD patients by disease stage[J]. Int J Clin Exp Med,2014,7(12):5324-5329.
[11] Kuchroo VK,Awasthi A. Emerging new roles of Th17 cells[J]. Eur J Immunol,2012,42(9):2211-2214.
[12] Lee HS,Park HW,Song WJ,et al. TNF-α enhance Th2 and Th17 immune responses regulating by IL23 during sensitization in asthma model[J]. Cytokine,2016(79):23-30.
[13] Ponce-Gallegos MA,Ramire-Venegas A,Falfan-Valencia R. Th17 profile in COPD exacerbations[J]. Int J Chron Obstruct Pulmon Dis,2017,22(12):1857-1865.
[14] Vargas-Rojas MI,Ramírez-Venegas A,Limón-Camacho L,et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease[J]. Res Med,2011,105(11):1648-1654.
[15] Harrison OJ,Foley J,Bolognese BJ,et al. Airway infiltration of CD4+CCR6+Th17 type cells associated with chronic cigarette smoke induced airspace enlargement[J]. Immunol Lett,2008(121):13-21.
[16] Chu S,Zhong X,Zhang J,et al. The expression of Foxp3 and ROR gamma t in lung tissues from normal smokers and chronic obstructive pulmonary disease patients[J]. Int Immunopharmacol,2011,11(11):1780-1788.
[17] Dancer R,Sansom DM. Regulatory T cells and COPD[J]. Thorax,2013,68(12):1176-1178.
[18] Costantino C,Baecher-Allan CD. Human regulatory T cells and autoimmunity[J]. Eur J Immunol,2008,38(4):921-924.
[19] Lee SH,Goswami S,Grudo A,et al. Antielastin autoimmunity in tobacco smoking-induced emphysema[J]. Nat Med,2007,13(5):567-569.
[20] Roos-Engstrand E,Ekstrand-Hammarström B,Pourazar J,et al. Influence of smoking cessation on airway T lymphocyte subsets in COPD[J]. COPD,2009,6(2):112-120.
[21] Lucy J C,Smyth,Cerys,Starkey,Jorgen,Vestbo,et al. CD4-regulatory cells in COPD patients[J]. Chest,2007,132(1):156-163.
[22] 陈钢,谢灿茂,罗志扬,等.慢性阻塞性肺疾病加重期和稳定期Th17和Treg细胞的表达[J].中山大学学报(医学科学版),2013,34(6):917-921.
[23] Handono K,Firdausi SN,Pratama MZ,et al. Vitamin A improve Th17 and Treg regulation in systemic lupus erythematosus[J]. Clin Rheumatol,2016,35(3):631-638.
[24] Lane N,Robins RA,Corne J,et al. Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells[J]. Clin Sci (Lond),2010,119(2):75-86.
[25] Lim SM,Kang GD,Jeong JJ,et al. Neomangiferin modulates the Th17/Treg balance and ameliorates colitis in mice[J]. Phytomedicine,2016,23(2):131-140.
[26] Wang H,Peng W,Weng Y,et al. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure[J]. Int Immunopharmacol,2012,14(4):504-512.
[27] Wang Huaying,Ying Huajuan,Wang Shi,et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease[J]. Clin Res J,2014,9:330-341.
[28] Yang H,Antoine DJ,Andersson U,et al. The many faces of HMGB1:molecular structure-functionalactivity in inflammation,apoptosis,and chemotaxis[J]. J Leukoc Biol,2013,93(6):865-873.
[29] Yang Q,Liu X,Yao Z,et al. Penehyclidine hydrochloride inhib-its the release of high-mobility group box 1 in lipopolysaccharide-activated RAW264.7 cells and cecal ligation and puncture-induced septic mice[J]. J Surg Res,2014,186(1):310-317.
[30] Musumeci D,Roviello GN,Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies[J]. Pharmacol Ther,2014,14(3): 347-357.
[31] He ZW,Qin YH,Wang ZW,et al. HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-κB signaling pathways[J]. Med Inflamm,2013,2013:596716.
[32] Ko HK,Hsu WH,Hsieh CC,et al. High expression of high-mobility group box 1 in the blood and lung s is associated with the development of chronic obstructive pulmonary disease in smokers[J]. Respirology,2014,19(2):253-261.
[33] Ferhani N,Letuve S,Kozhich A,et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2010,181(9):917-927.
[34] Kanazawa H,Tochino Y,Asai K,et al. Validity of HMGB1 measurement in epithelial lining fluid in patients with COPD[J]. Eur J Clin Invest,2012,42(4):419-426.
[35] Hou C,Zhao H,Liu L,et al. High mobility group protein B1(HMGB1) in asthma :comparison of patients with chronic obstructive pulmonary disease and healthy controls[J]. Mol Med,2011,17(7-8):807-815.
[36] 杨晓敏,杨华.慢性阻塞性肺疾病患者肺组织和血清高迁移率族蛋白B1的表达[J].实用医学杂志,2013,29(18):3009-3011.
[37] Weitzenblum E,Chaouat A,Canuet M,et al. Pulmonary hypertension in chronic obstructive pulmo nary disease and interstitial lung diseases[J]. Semin Respir Crit Med,2009,30(4):458-470.
[38] Sukkar MB,Ullah MA,Gan WJ,et al. RAGE: a new frontier in chronic airways disease[J]. Br J Pharmacol,2012,167(6):1161-1176.
[39] Ferhani N,Letuve S,Kozhich A,et al. Expression of high-mobility group box 1 and of receptor for adv anced glycation e nd products in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2010,181(9):917-927.
[40] Duan L,Wang CY,Chen J,et al. High-mobility group box 1 promotes early acute allograft rejection by enhancing IL-6-dependent Th17 alloreactive response[J]. Lab Invest,2011,91(1):43-53.
[41] Li J,Wang FP,She WM,et al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory lls (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B[J]. J Viral Hepat,2014,21(2):129-140.
[42] Zhang F,Huang G,Hu B,et al. Recombinant HMGB1 A box protein inhibits Th17 responses in mice with neutrophilic asthma by suppressing dendritic cell-mediated Th17 polarization[J]. Int Immunopharmacol,2015,24(1):110-118.