膜型雌激素受体ER-α36的分子结构及相关信号传导途径研究进展

2018-03-19 12:42徐雪芬吴水水王衡黄剑
山东医药 2018年19期
关键词:蛋白激酶磷酸化途径

徐雪芬,吴水水,王衡,黄剑

(广东医科大学,广东湛江524023)

雌激素受体(ER)与多种肿瘤的发生发展密切相关。大约70%的乳腺癌ER表达阳性[1]。ER阳性表达的肿瘤往往预后好、对内分泌治疗敏感。遗憾的是,大多数患者经过1年多的治疗后,将产生不同程度耐药,给临床治疗带来极大挑战[2~4]。ER主要包含ER-α和ER-β两种类型。ER-α的主要类型ER-α66位于细胞核,属于核型雌激素受体,而ER-α36定位于细胞膜,属膜型雌激素受体。探索膜型雌激素受体的结构特点及其相关信号通路,有助于了解其在肿瘤发生发展中的作用,甚至发现逆转ER相关肿瘤耐药的方法。现将膜型雌激素受体ER-α36的分子结构和相关信号通路研究进展综述如下。

1 ER-α36的分子结构

2005年Wang等[5]从人的子宫内膜cDNA库发现了一种全长的cDNA克隆基因,这种基因完全契合了ER-α66配体依赖区基因转录的DNA序列。其cDNA全长5.4 kb,可以转录形成310个氨基酸开放阅读框,编码出分子量约为35.7 KDa蛋白,即ER-α36。ER-α36缺乏ER-α66的转录激活区(AF-1 和AF-2),保留了DNA结合区域、部分二聚体和配体结合区域。其cDNA序列的开放阅读框完好地匹配了ER-α66基因DNA序列的外显子2至外显子6区域[6]。ER-α36的配体结合区可以进行转录后的棕榈酰化修饰,还有3个潜在的豆蔻酰化位点[7, 8]。因此,ER-α36可能在雌激素的基因组或非基因组信号途径中都发挥一定作用。

Wang等[5]认为,ER-α36能够抑制ER-α66和ER-β的基因组信号转导途径,而ER-α66又可以抑制ER-α36的AP1启动子活性,这种抑制可以被ER-α36和ER-α46本身解除。此外,ER-α46又可以抑制ER-α66的AF-1结构域的转录活性[6]。所以在同一细胞中,ER-α66、46和36的相对水平决定着细胞选择基因组还是非基因信号转导途径[9]。17-β雌二醇(E2)能够激活快速激活ER-α36,引起MAPK / ERK与PI3K/ Akt信号通路的激活,导致ERK、Akt磷酸化[10, 11]。其他雌激素包括雌酮(E1)、17-α雌二醇(E2α)、雌三醇(E3)和雌四醇(E4)都可以与ER-α36并发挥类似作用。表明ER-α36可能比ER-α66具有更广泛的配体结合谱[12]。

ER通过蛋白与蛋白、蛋白与DNA锚定转录因子之间相互作用调节雌激素下游的信号转录。ERs甚至可以与上皮生长因子受体(EGFR)超家族相互作用,产生同源或异源二聚体,上调或下调乳腺肿瘤细胞对雌激素的敏感性。有研究用低浓度(nmol/L)的雌激素作用于高表达ER-α36的乳腺癌细胞,能快速激活ERs信号通路引起的细胞增殖活化;但高浓度(μmol/L)的雌激素会抑制高表达ER-α36乳腺癌细胞的增殖[8, 13, 14]。ER-α36对激素作用敏感,用E2-BSA(一种结合牛血清蛋白,具有不渗透细胞膜特性的雌二醇)处理ER-α36高表达乳腺癌细胞,数分钟后即可引起ERK磷酸化[12],表明ER-α36能介导快速、非基因组的雌激素信号途径。

ER-α36主要定位于细胞膜[15],其表达不受ER-α66的影响。无论在ER阴性还是ER阳性乳腺癌中均可被检测到,但在ER-α66阴性乳腺癌中呈现出高表达特性[16]。约40% ER-α66阳性的乳腺癌组织ER-α36高表达。然而在人正常乳腺细胞系MCF-10A中 ER-α36和ER-α66的表达均呈阴性。另外,高表达ER-α36的乳腺癌细胞ER-α66和ER-β依赖和非依赖的雌激素基因组信号转录活性下降[12],提示ER-α36有可能抑制雌激素的基因组信号。三阴(ER阴、PR阴、HER-2阴)乳腺癌细胞MDA-MA-231和MDA-MA-436 中ER-α36呈高表达。ER-α36与ER-α66这种双向抑制效应产生的机制尚不明确[17],但较为肯定的是ER-α36与配体结合后可激活下游信号激发多种细胞内信号级联反应,调控肿瘤细胞的增殖、分化和凋亡,甚至参与了肿瘤耐药。我们前期研究发现,82例三阴型(Basal-like 型)乳腺癌患者ER-α36阳性表达率96.3%,p-ERK及p-AKT阳性表达率均为97.6%,这些患者均具有肿瘤体积大、易转移和预后差的特点。表明ER-α36对于乳腺癌患者预后具有重要监测价值。

2 ER-α36相关信号传导途径

膜型雌激素受体与胞内多种信号存在着交叉对话现象,并参与介导细胞内的快速信号途径[14],如腺苷酸环化酶途径(AC)、蛋白激酶C途径(PKC)、G蛋白偶联途径、磷脂酰三磷酸肌醇激酶PI3K/AKT信号途径、丝裂原活化蛋白激酶MAPK/ERK信号途径[18]、Ca2+通路[19]和Src激酶激活的信号途径等[20]。总结上述激活事件,可归纳为3种主要的信号通路:Ras-Raf-MEK-MAPK通路、G蛋白-Src-PI3K-AKt通路、PLC-PKC-cAMP-PKA通路[21]。

2.1 Ras-Raf-MEK-MAPK-Erk途径 丝裂原激活的蛋白激酶途径在许多肿瘤的发生、发展中扮演重要角色,如乳腺癌、前列腺癌、结直肠癌等。Wang等[12]发现用E2β-BSA作用于转染了ER-α36的HEK293细胞,与对照组相比,细胞ERK磷酸化水平明显升高。表明ER-α36能够激活MAPK/ERK信号通路。MAPK又可以被MAPK激酶(MEKs)的特定苏氨酸和酪氨酸残基磷酸化而激活,MEKs本身又被其上游蛋白激酶Raf激活,Raf蛋白同时又受到Ras蛋白家族的调节。有趣的是低浓度雌激素作用于三阴性乳腺癌细胞株,激活了原癌基因Src,并使酪氨酸激酶位点Src-Y416磷酸化,通过胞内信号级联反应激活MAPK/ERK途径,促进细胞有丝分裂,加速肿瘤进展。高浓度时则使Src-Y527磷酸化,抑制肿瘤细胞生长[22, 23]。通过研究ER阳性乳腺癌细胞株发现,Src和EGFR对雌激素刺激生长起重要作用,并调节了信号转录激活因子5(STAT5)活性[24]。E2诱导激活Src-Y416磷酸化同时伴随EGFR-Y845磷酸化[12]。

2.2 G蛋白-Src-PI3K-AKt途径 丝/苏氨酸蛋白激酶Akt又名蛋白激酶B(PKB),在细胞增殖、生存和凋亡过程中发挥重要作用。Lin等[25]发现,用睾酮、E2或tamoxifen作用于子宫内膜癌Hec1A细胞,均能激活PI3K/Akt信号通路,使其发生磷酸化,敲除ER-α36后该信号通路不能被引出。另外,用tamoxifen作用于高表达ER-α36的MCF-7细胞,能诱导Akt磷酸化,这种作用能被PI3K抑制剂LY294002阻断[26]。

2.3 PLC-PKC-AC-cAMP-PKA途径 E2可以通过ER-α36快速作用于神经元GABA受体上的G蛋白门控内向整流钾通道(GIRK)[19, 27],调节神经元的兴奋性。PKCs本身位于磷脂酶C(PLC)-三磷酸肌醇(PI3)-二酯酰甘油(DAG)信号下游。PKC的活化可以抑制海马CA1区GABA受体激活GIRK通道。Qiu等[27, 28]发现E2可以激活PKC和PKA,从而改变雌性豚鼠下丘脑GRCPs偶联的K+通量。E2通过激活cAMP瀑布式信号增强红藻氨酸盐/海仁酸诱导的K+电流,PKA的特异性抑制剂(Rp-cAMP)减弱了E2的这种效应[28]。E2诱导的快速PLC-PKC-PKA信号途径可能参与协同中枢神经系统(CNS)递质的传递,并能增强大脑回路的突触效应,这对维持CNS的稳态至关重要。

参考文献:

[1] Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network [J]. Nat Rev Mol Cell Biol, 2001,2(2):127-137.

[2] Jensen EV, Desombre ER. Estrogen-receptor interaction [J]. Science, 1973,182(4108):126-134.

[3] Kuiper GG, Enmark E, PeltoHuikko M, et al. Cloning of a novele estrogen receptor expressed in rat prostate [J]. 1996,7(4):155-157.

[4] Hayashi S, Yamaguchi Y. Basic research for hormone-sensitivity of breast cancer [J]. Breast Cancer, 2006,13(2):123-128.

[5] Wang Z, Zhang X, Shen P, et al. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66 [J]. Biochem Biophys Res Commun, 2005,336(4):1023-1027.

[6] Flouriot G, Brand H, Denger S, et al. Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1 [J]. EMBO J, 2000,19(17):4688-4700.

[7] Rao J, Jiang X, Wang Y, et al. Advances in the understanding of the structure and function of ER-alpha36,a novel variant of human estrogen receptor-alpha [J]. J Steroid Biochem Mol Biol, 2011,127(3-5):231-237.

[8] Yin L, Wang ZY. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance [J]. Steroids, 2016,11(1):95-99.

[9] Xu BZ, Lin SL, Li M, et al. Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation [J]. Histochem Cell Biol, 2009,131(3):347-354.

[10] Segars JH, Driggers PH. Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes [J]. Trends Endocrinol Metab, 2002,13(8):349-354.

[11] 彭瑶, 连增林. 新型雌激素受体ER-α36的生物学效应及其相关疾病的研究现状 [J]. 中国医药生物技术, 2012, 7(1): 47-50.

[12] Wang Z, Zhang X, Shen P, et al. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling [J]. Proc Natl Acad Sci USA, 2006,103(24):9063-9068.

[13] Zhang J, Li G, Li Z, et al. Estrogen-independent effects of ER-alpha36 in ER-negative breast cancer [J]. Steroids, 2012,77(6): 666-673.

[14] Zhang X, Deng H, Wang ZY. Estrogen activation of the mitogen-activated protein kinase is mediated by ER-alpha36 in ER-positive breast cancer cells [J]. J Steroid Biochem Mol Biol, 2014,14(3):434-443.

[15] Shi YE, Chen Y, Dackour R, et al. Synuclein gamma stimulates membrane-initiated estrogen signaling by chaperoning estrogen receptor (ER)-alpha36, a variant of ER-alpha [J]. Am J Pathol, 2010,177(2):964-973.

[16] Jia S, Zhang X, He DZ, et al. Expression and function of a novel variant of estrogen receptor-alpha36 in murine airways [J]. Am J Resp Cell Mol, 2011,45(5):1084-1089.

[17] Vranic S, Gatalica Z, Deng H, et al. ER-alpha36, a novel isoform of ER-alpha66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast [J]. J Clin Pathol, 2011,64(1):54-57.

[18] Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-alpha36): A new player in human breast cancer [J]. Mol Cell Docr, 2015, 418 (Pt 3):193-206.

[19] Malyala A, Kelly M, Ronnekleiv O. Estrogen modulation of hypothalamic neurons: Activation of multiple signaling pathways and gene expression changes [J]. Steroids, 2005,70(5-7):397-406.

[20] Fox EM, Bernaciak TM, Wen J, et al. Signal transducer and activator of transcription 5b, c-Src, and epidermal growth factor receptor signaling play integral roles in estrogen-stimulated proliferation of estrogen receptor-positive breast cancer cells [J]. Mo Endo, 2008,22(8):1781-1796.

[21] Zhang D, Trudeau VL. Integration of membrane and nuclear estrogen receptor signaling [J]. Mol Integr Physiol, 2006, 144(3):306-315.

[22] Zhang X, Ding L, Kang L, et al. Estrogen receptor-alpha 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells [J]. PloS One, 2012,7(1):30174.

[23] Deng H, Zhang XT, Wang ML, et al. ER-alpha36-mediated rapid estrogen signaling positively regulates ER-positive breast cancer stem/progenitor cells [J]. PloS One, 2014,9(2):88034.

[24] Zhang XT, Ding L, Kang LG, et al. Involvement of ER-alpha36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells [J]. Oncol Rep, 2012,27(6):2057-2065.

[25] Lin SL, Yan LY, Liang XW, et al. A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1A cells [J]. Reprod Biol Endo, 2009,7(1):102.

[26] Driggers P H, Segars J H. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling [J]. Trend Endo Metab, 2002,13(10):422-427.

[27] Gu Q, Moss R L. 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade [J]. J Neurosci Officia J Soci, 1996,16(11):3620.

[28] 张艳秋, 孙立柱, 王昳凡,等.曲妥珠单抗联合内分泌维持治疗HR和HER-2阳性晚期乳腺癌的临床观察 [J]. 临床肿瘤学杂志, 2017, 22(5): 427-431.

[29] Zhang X, Wang ZY. Estrogen receptor-alpha variant, ER-alpha36, is involved in tamoxifen resistance and estrogen hypersensitivity [J]. Endocrinology, 2013,154(6):1990-1998.

[30] 樊官伟, 何俊, 王虹, et al. 雌激素及其受体信号转导途径的研究进展 [J]. 中国临床药理学与治疗学, 2007,12(3):266-269.

[31] Tu BB, Lin SL, Yan LY, et al. ER-alpha36, a novel variant of estrogen receptor alpha, is involved in EGFR-related carcinogenesis in endometrial cancer [J]. Am J Obstet Gynecol, 2011,205(3):2271-2276.

[32] Chung A, Cui X, Audeh W, et al. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance [J]. Clin Breast Cancer, 2013,13(4):223-232.

[33] O′Sullivan CC, Smith KL. Therapeutic Considerations in Treating HER2-Positive Metastatic Breast Cancer [J]. Curr Breast Cancer Rep, 2014,6(3):169-182.

猜你喜欢
蛋白激酶磷酸化途径
解析参与植物胁迫应答的蛋白激酶—底物网络
构造等腰三角形的途径
ITSN1蛋白磷酸化的研究进展
多种途径理解集合语言
减少运算量的途径
磷酸化肽富集新方法研究进展
MAPK抑制因子对HSC中Smad2/3磷酸化及Smad4核转位的影响
蛋白激酶KSR的研究进展
组蛋白磷酸化修饰与精子发生
丝裂原活化蛋白激酶磷酸酶-1在人胰腺癌组织中的表达