王为民, 张天文, 刘光兴, 陈洪举**, 毛雪微
(1. 中国海洋大学海洋环境与生态教育部重点实验室,山东 青岛 266100; 2. 国家海洋局第一海洋研究所海洋气候研究中心,山东 青岛 266061;3. 山东省海水养殖研究所,山东 青岛 266002; 4.中国海洋大学环境科学与工程学院,山东 青岛 266100)
在过去的250年里,由于化石燃料燃烧、森林砍伐和其他人类活动,大气CO2平均浓度从工业革命前的280 μatm[1-2]升高到现在的395.26 μatm(NOAA, 2014)。大气CO2浓度的升高造成海水pCO2升高、pH值降低和碳化学平衡改变,导致海洋酸化现象[1,3-4]。海洋酸化将会影响海洋生态系统平衡,影响海洋双壳类的生长发育和代谢[5-10]。
除了对贝类酶活性等生理活动造成影响,海洋酸化还会对其潜沙等行为活动产生影响。双壳类生物幼体营附着生活,具有潜沙的特性。研究发现魁蚶稚贝生活环境(如温度等)的变化将显著影响魁蚶稚贝的潜沙过程[15]。海洋贝类对潜沙行为的调控是其适应环境变化的表现。关于CO2浓度升高导致的海洋酸化对贝类酶活性和潜沙行为影响的研究报道较少且机理不明。
魁蚶(Scapharcabroughtonii, Schrenck, 1876)在中国分布广泛且其经济价值较高,是我国出口换汇率较高的水产品之一,在中国北方沿海地区开展的人工繁育和养殖试验取得了很大的成就[16]。未来海洋酸化导致的海水CO2浓度升高可能会对魁蚶养殖业造成不利影响,而双壳类早期生长阶段相比成体对CO2浓度升高更为敏感[17-18]。因此,开展高CO2浓度条件对魁蚶早期发育阶段的影响研究非常重要。本文采用CO2加富培养的方法,研究了高CO2浓度条件对魁蚶稚贝壳长、潜沙过程和3种酶(SOD、CAT和AChE)活性的影响,以期为揭示海洋酸化对水产养殖业和海洋生态系统的影响提供基础数据。
实验用魁蚶稚贝(平均壳长(17.20 ± 0.03) mm)由山东海水养殖研究所提供,在实验室暂养于连续充气(DO>5.5 mg/L)的若干个水族箱(40 cm×35 cm×15 cm;温度20 ℃;盐度30)内,暂养7 d。暂养和实验期间魁蚶稚贝每天喂食1次,喂食饵料为球等鞭金藻(Isochrysisgalbana)和三角褐指藻(Phacodactylumtricornutum)的混合藻液,保持培养水体藻细胞浓度小于105cells/L。
30 cm×20 cm×15 cm规格的水族箱内底部铺设4~5 cm中砂(取自青岛金沙滩),装入其容积约2/3体积的膜滤(GF/C 0.45 μm)灭菌(121 °C, 15 min)海水,并分别泵入过滤自然空气(395 μatm CO2,2014年全球大气CO2浓度平均水平)和含1 000 μatm CO2(2010年大气平均CO2浓度预测水平)的过滤混合空气,作为对照组和CO2组。通气流量控制在0.1 L·min-1,CO2浓度和通气流量由CO2加富器(CE100-6型,武汉瑞华仪器设备有限责任公司)控制。
于每个水族箱沙层(4~5 cm)表面自然放置魁蚶稚贝40只,观察稚贝的潜沙行为,记录稚贝的初潜时间(min)及1 h潜沙率。初潜时间为第1只魁蚶稚贝潜沙的时间,潜沙标准为魁蚶稚贝贝壳一半以上埋入沙中;潜沙率(%)=已潜沙个体数/总个体数 × 100。实验进行3次。
取6个3 L三角瓶,分别加入2 L灭菌膜滤海水。每个培养容器顶面设置两管:其中一个管设置为进气管,通入过滤自然空气(对照组,3个平行)和1 000 μatm CO2的过滤混合空气(CO2组,3个平行),通气流量控制在0.1 L·min-1。CO2浓度和通气流量由CO2加富器控制;另一个管设置为出气口,并于出气口处设置针头过滤器(MCE Syringe Filter,北京谱朋科技有限公司)以防止外界颗粒和微生物进入培养系统。
每个培养容器中放置40只生长状态良好、绒毛完整的魁蚶稚贝,使其自然散落在培养容器底部。培养周期为14 d,温度控制在20°C,每天喂食一次,喂食前换水(对照组培养容器加入提前泵入过滤空气至pH值稳定的灭菌海水,CO2组培养容器加入提前泵入含1 000 μatm CO2的混合空气至pH值稳定的灭菌海水)并清理粪便等杂质。
每隔1天正午12:00取各培养容器内水体(10 mL),测量pH值(pH计,PB-10,Sartorius,德国)和溶解无机碳(Dissolved inorganic carbon, DIC)浓度(总有机碳分析仪,TOC-VCPN,岛津SHIMADZU,日本);每个容器内取3只生长状态良好的魁蚶稚贝,用游标卡尺测其体长,去壳后测其组织的SOD、CAT和AChE活性(U/mgprot)。3种酶活性均采用南京建成生物研究所生产的试剂盒测定。
采用SPSS 19.0软件进行数据处理,采用Origin 8.5软件绘图。
实验过程中,CO2组pH值明显降低,第2~14天CO2组pH值极显著低于对照组(P<0.01)(见图1(a))。CO2组培养水体平均pH降至7.71,比对照组培养过程中平均pH(8.30)低0.59。CO2浓度升高还引起了培养水体DIC浓度的上升。除第2天外,CO2组DIC浓度(平均值为34.50 mg/L)极显著高于对照组(29.96 mg/L)(P<0.01)(见图1(b))。
CO2组魁蚶稚贝初次潜沙时间((5.7±0.5)min)相比对照组((7.8±1.3)min)显著缩短(P< 0.01),同时CO2组魁蚶稚贝1 h潜沙率((69.67 ± 5.13)%)相比对照组((61.33 ± 3.21)%)显著升高(P< 0.01)(见图2)。
实验开始时魁蚶稚贝壳长为(17.20 ± 0.03) mm。在培养过程中,CO2组魁蚶稚贝壳未出现明显生长;对照组魁蚶稚贝壳长在培养第4天起持续增长,并从第8天开始显著高于CO2组(P<0.05)。实验结束时,CO2组魁蚶稚贝体长((17.24 ± 0.02)mm)显著低于对照组((17.37 ± 0.07) mm)(P<0.05)(见图3 (a))。
(* P<0.05;** P<0.01, Error bar: SD)
(** P<0.01, Error bar: SD)图2 CO2组和对照组魁蚶稚贝初潜时间和潜沙率Fig.2 The first burrowing time and burrowing rate of Scapharca broughtonii in CO2 and control treatments
对照组魁蚶稚贝SOD活性在培养过程中没有明显变化;CO2组魁蚶稚贝SOD活性在培养前4天内出现上升,并于第4天时((24.30±1.08) U/mgprot)显著高于对照组((19.40±2.45) U/mgprot)(P<0.05),之后出现下降。第6天始2个组SOD活性无显著差异(见图3 (b))。
2个组魁蚶稚贝CAT活性在前4天均出现上升但无显著差异。之后,CO2组魁蚶稚贝CAT活性基本不变,对照组魁蚶稚贝CAT活性在第6天始出现下降并低于CO2组,在第12天出现显著差异(P<0.05),其余时间均无显著差异(见图3(c))。
培养实验开始后对照组魁蚶稚贝AchE活性开始下降,而CO2组魁蚶稚贝AchE活性在培养过程中没有明显变化,两实验组魁蚶稚贝AchE活性除在第10天出现显著差异(P<0.05)外,在培养过程中无显著差异(见图3(d))。
魁蚶无水管,其幼体营附着生活,成长过程中足丝退化,转为埋栖生活并具有潜沙的特性,潜居后以壳的后缘在沙面形成通水孔[19]。海洋贝类对潜沙行为的调控是其适应环境变化的表现,它们可以通过降低潜沙速率以降低耗能储存能量[20],也可以通过增高潜沙速率躲避不利环境条件如捕食者的摄食等[21]。有研究表明,魁蚶稚贝可以通过对其潜沙行为的调节适应生活环境的变化[15],本研究结果显示,高CO2浓度条件下魁蚶稚贝初潜时间显著减小,潜沙率显著增加,潜沙行为受到促进,说明魁蚶稚贝趋于躲避CO2浓度升高造成的不利环境。
CO2浓度升高条件下,培养水体pH和DIC浓度等发生显著变化,魁蚶稚贝壳生长过程受到抑制(见图3(a))。在高CO2浓度条件下,钙化生物会降低其钙化率,壳甚至会溶解[22]。双壳类幼体的壳由较不稳定的霰石(aragonite)组成[23],成体壳的成分转变为更为稳定的方解石(calcite)[24]。因此,双壳类幼体相比成体更容易在高CO2浓度条件下受到不利影响。有研究表明,海湾扇贝(Argopectenirradias)的幼体相比成体更易受到高CO2浓度条件的影响[17],地中海贻贝(Mytilusgalloprovincialis)胚壳开始形成的担轮幼虫阶段在酸化条件下会出现发育延迟现象,但担轮幼虫阶段以后不受海水酸化的影响[18];然而,菲律宾蛤仔(Ruditapesphilippinarum)稚贝和成体的生长在高CO2浓度条件下均无明显变化[25]。本研究结果显示,高CO2浓度条件下魁蚶稚贝壳的生长较为缓慢,1 000 μatm CO2浓度已经对魁蚶稚贝壳的正常生长有不利影响。这表明酸化条件下,魁蚶等双壳类生物的幼体和稚贝阶段均可能受到不利影响。
高CO2浓度还对魁蚶稚贝的生理活动造成影响,研究表明,在潮汐出现时海水CO2浓度增加,海洋无脊椎动物体内瓣膜关闭、呼吸作用增强[33-34],同时体内血淋巴(Hemolymph)pH值降低[26],从而导致其抗氧化酶活性的升高;潮汐的周期性还使得潮间带海洋无脊椎动物体内抗氧化酶活性存在周期性变化[32]。CO2组和对照组魁蚶稚贝的3种酶(SOD,CAT和AChE)活性虽在实验过程中无明显差异,但CO2组3种酶活性的平均值均略高于对照组, 1 000 μatm CO2浓度条件下魁蚶稚贝可能已开始通过改变自身酶活性来适应不利的环境变化。本文推测如果CO2浓度继续升高(>1 000 μatm),魁蚶稚贝3种酶活性将在一定范围内继续升高。双壳类对CO2浓度变化调节能力有限,CO2浓度升高将导致线粒体活性加强,线粒体中电子传递链(Electron Transport Chain,ETC)正常运转受到影响[27-28],而线粒体是ROS产生的主要场所[29],ROS的产量的增加使得贝类抗氧化基因表达量出现上调[5];而SOD和CAT活性增强可以使细胞中的ROS及时清除,使生物细胞免受环境变化导致的ROS产量升高的不利影响,保护生物细胞[30-31]。因而在本研究中升高的pCO2使魁蚶稚贝体内氧化胁迫增强,为了使自身细胞免受大量ROS的不利影响,魁蚶稚贝SOD和CAT活性出现一定程度的升高。
((a)体长;(b)超氧化物歧化酶;(c)过氧化氢酶;(d)乙酰胆碱酯酶。(a)Body length; (b)SOD; (c)CAT; (d)AchE.)(*P<0.05, **P<0.01, Error bar: SD.)
图3 CO2组和对照组魁蚶稚贝体长和3种酶活性变化曲线
Fig.3 The shell length and SOD, CAT, AChE activity ofScapharcabroughtoniiin CO2and control treatments
AChE的主要作用是通过催化水解神经递质乙酰胆碱(Acetylcholine, ACh)来维持神经冲动的正常传递[12],AChE活性的升高意味着神经冲动传递的增加。本研究中魁蚶稚贝在面对CO2浓度升高条件下,潜沙过程受到促进,本文推测魁蚶稚贝通过增加ACh来增加了神经冲动的传递,其潜沙行为活动受到促进,而ACh的增加导致了AChE活性的升高。
[1] Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO2on the CaCO3system in the oceans[J]. Science, 2004, 305(5682): 362-366.
[2] Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650 000-800 000 years before present[J]. Nature, 2008, 453(7193): 379-382.
[3] Zeebe R E, Zachos J C, Caldeira K, et al. Carbon emissions and acidification[J]. Science, 2008, 321: 51-52.
[4] Feely R A, Doney S C, Cooley S R. Ocean acidification: present conditions and future changes in a high CO2world[J]. Oceanography, 2009, 22: 36-47.
[5] Tomanek L, Zuzow M J, Ivanina A V, et al. Proteomic response to elevated pCO2level in eastern oysters,Crassostreavirginica: evidence for oxidative stress[J]. Journal of Experimental Biology, 2011, 214(11): 1836-1844.
[6] Matozzo V, Chinellato A, Munari M, et al. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature[J]. PLoS One, 2012, 7(3): e33820.
[7] Clark M S, Thorne M A S, Amaral A, et al. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster,Crassostreagigas[J]. Ecology and Evolution, 2013, 3(10): 3283-3297.
[8] Matoo O B, Ivanina A , Ullstad C, et al. Interactive effects of elevated temperature and CO2levels on metabolism and oxidative stress in two common marine bivalves (CrassostreavirginicaandMercenariamercenaria)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 164(4): 545-553.
[9] Vargas C A, de la Hoz M, Aguilera V, et al. CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the molluskConcholepasconcholepas[J]. Journal of Plankton Research, 2013, 35(5): 1059-1068.
[10] Belivermis M, Warnau M, Metian M, et al. Limited effects of increased CO2and temperature on metal and radionuclide bioaccumulation in a sessile invertebrate, the oysterCrassostreagigas[J]. ICES Journal of Marine Science: Journal du Conseil, 2016, 73(3): 753-763.
[11] Dean J B. Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2chemoreceptor function and dysfunction[J]. Journal of Applied Physiology, 2010, 108(6): 1786-1795.
[12] Murty A S, Ramani A V. Toxicity of Anticholinesterases to Aquatic Toxicology[M]. Bakkabttbem B, Marrs TC. Eds. Clinical and Experimental Toxicology of Organophosphates and Carbamates. Stoneham: Butterworth-Heineman, 1992: 305-320.
[13] Dellali M, Barelli M G, Romeo M, et al. The use of acetylcholinesterase activity inRuditapesdecussatusandMytilusgalloprovincialisin the biomonitoring of Bizerta lagoon[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2001, 130(2): 227-235.
[14] Greco L, Pellerin J, Capri E, et al. Physiological effects of temperature and a herbicide mixture on the soft-shell clamMyaarenaria(Mollusca, Bivalvia)[J]. Environmental Toxicology and Chemistry, 2011, 30(1): 132-141.
[15] 周珊珊,张秀梅,蔡星媛,等. 温度对魁蚶稚贝潜沙能力及对多棘海盘车捕食魁蚶稚贝能力的影响[J]. 水产学报,2014,38(9):1439-1446.
ZHOU Shan-shan, ZHANG Xiu-mei, CAI Xing-yuan, et al.. Effects of temperature on burrowing ability of juvenile ark shell (Anadarabroughtonii) and predation rate on juvenile ark shell by sea star (Asteriasamurensis)[J]. Journal of Fisheries of China, 2014, 38(9): 1439-1446.
[16] 齐钟彦. 中国经济软体动物[M]. 北京:中国农业出版社, 2007.
QI Zhong-yan. Economic Mollusca of China[M]. Beijing: China Agriculture Press, 2007.
[17] White M M, McCorkle D C, Mullineaux L S, et al. Early exposure of bay scallops (Argopectenirradians) to high CO2causes a decrease in larval shell growth[J]. PloS One, 2013, 8(4): e61065.
[18] Zhang M, Zou J, Fang J, et al. Impacts of marine acidification on calcification, respiration and energy metabolism of Zhikong scallopChlamysfarreri[J]. Progress in Fishery Sciences, 2011, 23(4): 48-54.
[19] 王如才,王昭萍,张建忠,等. 海水贝类养殖学[M]. 青岛: 中国海洋大学出版社, 2008.
WANG Ru-Cai, WANG Zhao-Ping, ZHANG Jian-Zhong, et al. Science of Marine Shellfish Culture[M]. Qingdao: China Ocean University Press. 2008.
[20] Lai C H, Morley S A, Tan K S, et al. Thermal niche separation in two sympatric tropical intertidalLaternula(Bivalvia: Anomalodesmata)[J]. Journal of Experimental Marine Biology and Ecology, 2011, 405(1): 68-72.
[21] Sakurai I, Seto M, Nakao S. Effects of water temperature, salinity and substrata on burrowing behaviors of the three bivalves,Pseudocardiumsachalinensis,Mactrachinensis, andRuditapesphilipinarum[J]. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 1996, 62(6): 878-885.
[22] Kleypas J A, Feely R A, Fabry V J, et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research[R]. St. Petersburg, FL: NSF, NOAA and the US Geological Survey, 2006: 1-88.
[23] Carriker M R, Palmer R E. Ultrastructural Morphogenesis of Prodissoconch and Early Dissoconch Valves of the OysterCrassostreavirginica[D]. Delaware: College of Marine Studies, University of Delaware, 1979.
[24] Stenzel H B. Oysters: Composition of the larval shell[J]. Science, 1964, 145(3628): 155-156.
[25] Metzger D C. Characterizing the Effects of Ocean Acidification in Larval and Juvenile Manila Clam,Ruditapesphilippinarum, Using a Transcriptomic Approach[D]. Washington: University of Washington, 2012.
[26] Thomsen J, Casties I, Pansch C, et al. Food availability outweighs ocean acidification effects in juvenileMytilusedulis: laboratory and field experiments[J]. Global Change Biology, 2013, 19(4): 1017-1027.
[27] Murphy M P. How mitochondria produce reactive oxygen species [J]. Biochemical Journal, 2009, 417(1): 1-13.
[28] Starkov A A. Protein-mediated energy-dissipating pathways in mitochondria[J]. Chemico- Biological Interactions, 2006, 163(1): 133-144.
[30] Loew O. Catalase: A New Enzym of General Occurrence with Special Reference to the Tobacco Plant[M]. Washington: US Government Printing Office, 1901.
[31] Mc Cord J M, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055.
[32] Letendre J, Dupont-Rouzeyrol M, Hanquet A C, et al. Impact of toxicant exposure on the proteomic response to intertidal condition inMytilusedulis[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2011, 6(4): 357-369.
[33] Jokumsen A, Fyhn H J. The influence of aerial exposure upon respiratory and osmotic properties of haemolymph from two intertidal mussels,MytilusedulisL. andModiolusmodiolusL[J]. Journal of Experimental Marine Biology and Ecology, 1982, 61(2): 189-203.
[34] Duncan P, Spicer J I, Taylor A C, et al. Acid-base disturbances accompanying emersion in the scallopPectenmaximus(L.)[J]. Journal of Experimental Marine Biology and Ecology, 1994, 182(1): 15-25.