风力发电及其控制技术新进展探究

2018-02-04 17:49
智能城市 2018年18期
关键词:风轮叶尖风力

喻 挺

云南中云点新能源有限责任公司,云南昆明 650228

1 风力发电及其控制技术新进展的研究分析

1.1 风力发电系统控制的必要性

自然风会在速度大小以及方向上产生随机变化,因此,有效控制发电系统具有重要意义,包括控制机组的切入与切出电网、限制输出功率、检测风轮在运行过程中的故障并加以保护等。从定桨距恒速运行技术到变桨距变速运行技术,风力发电系统的控制技术在近年来得到了很大发展,已经达到基本供电目标。就风力发电机组而言,其重要技术之一就是调节机组功率,其调节方法主要有三种,即主动失速调节、定桨距失速调节以及变桨距调节等。目前,风力发电机组已经实现了变桨距变速运行,利用风速、风向变化,风力发电控制系统不仅可对机组实现并网、脱网和调向控制,还能利用变距系统有效控制机组的功率及转速,实现风力发电机组运行安全、速度的有效提升,大大促进了电力行业发展[2]。

1.2 国内风力发电现状

从技术层面上看,国内风力发电企业主要采取“三步走”战略,即引进技术、消化吸收、自主创新。目前我国5WM容量等级的风电设备逐步退出市场,取而代之的是兆瓦级风电机组,这也就意味着我国具备自主研发兆瓦级风机的技术能力。除此之外,风电设备制造业在近年来也有了蓬勃发展,国产机组占据着越来越高的国内市场份额。就风电行业而言,国产风电装备已经可以有效满足我国风电发展要求,例如,风电机组整机、关键性零部件等,但是一部分技术要求高的部件还要进口,如主轴轴承、变流器等。因此,加强风电装备制造技术创新、提高自主研发能力非常必要且重要。作为风力发电技术的重要组成和关键部分,风电控制技术更是成为了当前研究的重难点。

2 风力发电控制技术分析

2.1 风轮控制技术

要想风力发电系统的转化率达到最高,必须尽可能降低风能在获取过程中的消耗量,就风轮而言,其控制技术主要包括以下几种。

2.1.1 叶尖速比控制

在风力作用下,风轮的风叶尖端的转动线速度就叫做叶尖速。而叶尖速比就是指叶尖速和该时间段风速的比值。叶尖速比控制方法就是通过对叶尖速比值进行有效控制,以此优化风机系统。考虑到风速不同,并在此基础上确定最佳叶尖速比,由于无法调节和控制自然风的速度、风力大小,因此,要想实现控制功能,必须对叶尖速进行调整和改变,包括对风轮转矩进行调整,以此调节风轮最外边缘的速度,从而优化叶尖速比。

2.1.2 功率信号反馈控制

通过该方法来控制风轮的功率信号。在风轮运行过程中,其功率会随着条件的改变而改变,这是功率信号反馈控制方法的应用基础。通过分析功率关系进行最大功率曲线的绘制,在此基础上进行后续操作。在具体实践过程中,将最大功率和进行系统实际输出功率分析比较,获得二者差值,然后据此调整风轮桨矩,确保风轮运行功率达到最大。这一方法可以有效降低控制成本,但是值得注意的是,在风机日常运行过程中,最大功率曲线的获取是一项技术难题[3]。

2.1.3 爬山搜索控制

通过该方法对风机的功率点进行控制,其图像形似抛物线,最高处即为最大功率点。如果对当前工作点位置不能确定,可适当增加风轮转动速度,以此改变系统输出的直流功率,当系统输出的直流功率加大时,最高点在抛物线左侧,反之在右侧。利用该方法能够将最大功率点及时找出,在此基础上确定风轮转速。然而,如果风轮在转动时存在较大惯量,其转速很难改变,这是该方法的主要缺点。

茅台围绕着“酒”进行了许多高质量的研究,并且都取得了可喜成绩。从太空诱变育种,到茅台酒香气香味特征及功能组分研究;从全面深入探寻对茅台酒风格特征有主要贡献的风味物质,到开发大曲风味物质定性分析方法;从开发陶坛容量速测软件,到建立白酒中三萜物质角鲨烯的定量方法。茅台逐步建成了食品安全预警、研发、评估、监控四大平台联动的食品安全特色管理体系。

2.2 风力发电机与相关电力电子变换器控制技术

2.2.1 风力发电机控制技术

风力是风力发电的能量来源,由于风力在距地面位置较高处更大,因此能量转化需在高空完成。发电机及其相关设备应当尽可能提高其工作效率,并减轻其重量。永磁发电机具有损耗小、效率高等优点,在风力发电系统中有着广泛应用。目前可采取模块化方式进行发电机制造,以此实现制作成本的降低。除此之外,在控制风力发电系统中的发电机时,通常采取矢量控制方法,该方法能够实现直轴电流以及交轴电流二者的耦合解除,由此降低系统功率因数的控制难度。

2.2.2 电力电子变换器控制技术

在风力发电系统中,其电力电子变换器必须具备下列特征:具有较广的使用面,能够在大型风力发电系统中得到高效应用;在对风能进行转换时,具有较高的能量转换率,在转换完成后,还要具有较高的传输效率;能够对无功功率进行有效条件,实现功率因素的改善;具有较高的可靠性和安全性能。在确保运行效率较高的同时,具有大范围功率;设备成本不高,经济合理等。在风电系统中使用PWM整流器,可以对系统最大功率进行有效控制。在使用整流器时,采取矢量控制方式能够将有功功率与无功功率之间的耦合解除,确保得到的无功功率满足运行要求。除此之外,PWM整流器还能确保有功功率的输出量达到最大,通过对直流环节进行设置,从而有效调节风电系统的无功功率和有功功率。

2.3 风能发电中的谐波消除与无功功率补偿

2.3.1 谐波消除

在风机发电过程中,谐波的存在会降低电能整体质量,导致电的频率、电压等受到影响,破坏无功功率和有功功率之间的平衡性,因此必须将谐波的存在尽量消除。在实际运行阶段,谐波对风能发电的影响包括以下方面:增加发电机铁损、铜损,导致发电机出现超同步谐振;在电力设备运行过程中,谐波可能会引发设备热故障,导致系统正常运行受到干扰;导致控制电路及保护系统出现无动作,影响传感器的准确性;损坏电子设备,带来较大的经济损失。谐波消除方法包括下列几点:首先,利用电力变流器等电力设备,使其相位和谐波相互抵消;其次,谐波会导致无功功率增加,对电容器组进行合理调整,以此实现无功功率的改变,降低谐波对其影响;最后,采用三角形连接方式进行连接,将谐波进入量尽可能减小。此外,还可以根据实际情况进行滤波器的加设。

2.3.2 无功功率补偿

受感性元件影响,电力系统中的无功功率会产生消耗现象。当电压通过感性元件时,由于仅仅是无功功率出现消耗,感性元件两端的电压不会产生变化,如果存在较高电压,感性元件会有大电流通过,可能会损坏元件设备。这种情况下,应当对风力发电系统进行无功功率补偿,对谐波作用进行抑制。电容投切法在无功功率补偿中有着广泛应用,但是该方法也存在一定缺点,例如:如果在相同时间内投入的电容容量过大,会导致电压波动产生。

2.4 现代控制技术

风力发电现代控制技术主要有以下几种:变结构控制、鲁棒控制、自适应控制以及智能控制等。在风电系统中,变结构控制应用较广,其主要原因为该控制方法具备响应速度快、设计简便、便于实现等优点;在对多变量问题进行处理时,鲁棒控制能够取得良好效果,对于稳定性较强的鲁棒控制,更是能够直接解决参数不准、建模误差以及物质系统受干扰等控制问题;智能控制方法较多,其中最典型的是模糊控制。模糊控制对于数学模型依赖程度较低,可以依靠专家经验对非线性因素的影响进行有效克服。现阶段,建立精确的风力发电机数学模型难度较大,因此在控制风力发电机组时,模糊控制能够取得良好效果,已经受到广大研究人员的关注和重视。

3 结语

综上所述,社会经济的发展带动了电力行业的发展。作为国家重要的基础性行业,电力行业不仅直接关系到人们的生产生活,而且对国民经济发展有重要影响。近年来,国家加大了对风力发电的资金和技术投入,风力发电取得了显著成就。由于风电具有环保清洁、易获取、成本低等特点,其应用前景十分广阔。随着科学技术的进步,风机控制逐渐向着智能化、自动化方向发展,加强风力发电技术研究、开发与应用,能够大大提高风力发电系统工作效率和工作质量,进而实现风能利用率的增加,推动电力行业可持续发展。

猜你喜欢
风轮叶尖风力
海上漂浮式风力发电机关键技术研究
涡轮流体介电常数对高压涡轮叶尖间隙测量影响计算分析
凹槽叶尖对双级涡轮气动性能的影响
叶片数目对风轮位移和应力的影响
从五脏相关理论浅析祛风退翳法在风轮疾病的应用
不同串列布置间距下2 MW风力机尾流的研究
清晨的梦
不同风轮直径的1.5兆瓦机组市场概况
大型风力发电设备润滑概要
基于Bladed与Matlab的风力发电机组控制器设计