石雷,李云雷,孙研研,陈继兰
光照节律调控鸡繁殖性能机制研究进展
石雷,李云雷,孙研研,陈继兰
(中国农业科学院北京畜牧兽医研究所/农业部动物遗传育种与繁殖(家禽)重点实验室,北京 100193)
光照是生物体重要的环境因子。现代家禽生产普遍采用人工光照。禽类视觉敏感,光照对禽类的生长发育和繁殖的影响直接关系到生产效率。光照是温度、湿度和通风因素之外的另一个重要的环境因子。此外,鸡作为一种重要的模式动物,光照对其繁殖生理的影响和相关作用机制研究也具有重要科学意义。文章就禽类对光照的感知,光照节律对鸡性成熟和繁殖的影响进行归纳总结,同时概述了非自然光照节律、光照不应性和种蛋孵化期光照技术的研究进展,为深入理解光照节律对鸡繁殖性能的影响及其调控机制提供理论参考。禽类的光感受器如眼球(视网膜)、丘脑深部和松果体,能够将光信号转变为生物信号,并依靠神经内分泌系统,尤其是下丘脑-垂体-性腺轴,影响鸡的生殖系统发育和繁殖行为。育成期鸡群性腺发育很快,并对光照时间长短反应敏感。光照时长过短或者过长,可能导致鸡只生长受阻或者性成熟提前;每天维持恒定8或9 h的光照时长,可保证体况和体重在性成熟时达标,充分发挥繁殖潜力。产蛋期光照节律主要包括光照刺激时间和光照时长。光照刺激能促进鸡性成熟,但必须在恰当的阶段实施才能有效发挥其促进适时和整齐开产的作用。对于黄羽种鸡光照刺激时间的研究鲜有报道,生产中多参照蛋鸡的光照方案,或适当推延。进入产蛋期的鸡群,光照节律则由恒定短光照转变为恒定长光照,光照时长的选择也是提高鸡繁殖力的关键控制点之一。母鸡产蛋期需要较长的光照时长以维持其高产,但肉种鸡与蛋鸡在体况、饲喂方式和生理特点等不同,如光照不应性等生理特征。因此,肉种鸡的光照时长短于蛋鸡或蛋种鸡,一般为14或15h,而蛋鸡或蛋种鸡为16或17h。种公鸡性早熟在实际生产中具有重要作用,随着精液稀释和存储,以及种公鸡隔代利用等技术的应用发展,种公鸡光照调控技术研究也逐步开展。种公鸡性成熟后采取与母鸡同样的光照时长可能会降低精液品质,提示在公母分饲的条件下有必要对公鸡和母鸡进行有区别的光照节律管理。与常规24h光照节律不同,非自然光照节律的光照制度可以提高蛋重,但可能降低产蛋数。非自然光照周期不符合欧盟规定动物福利标准,与饲养人员的正常作息时间不一致,在实际生产中并未广泛应用,但是研究非自然光照周期对了解家禽的生物节律具有一定的参考价值。
鸡;光照节律;繁殖性能;调控机制
光照是生物体重要环境因子,对生命活动至关重要。光信号以周期变化、光照强度和光波长等属性被动物的光感受器所感知,并转变为生物学信号,调节动物生理和行为。禽类对光照敏感,在自然条件下,禽类要达到性成熟并获得繁殖能力,须以大自然的日照长度和强度刺激这一客观条件的变化为前提。因此,野生的禽类总是在大自然日照长度和强度逐渐延长和增加的时期进行自然繁殖[1]。人们发现这种自然规律以后,就开始通过人为干预的方法控制光照,从而实现任何时期都可以成为鸡繁殖季节的目的。在现代生产中,光照调节禽类的生长发育、生产和繁殖已成为一种提高生产效率的重要方法。光照节律是对光照和黑暗时长以及比例的控制,是光照管理中重要的调控方式。本文综述光照节律对鸡性成熟和繁殖性能的影响及相关机制研究进展,为进一步开展相关研究奠定基础。
家禽感知来自外界环境光线的过程主要包括两条途径:视网膜感受器和视网膜外感受器,分别位于视网膜和下丘脑。家禽的繁殖活动受神经内分泌调控,尤其是下丘脑-垂体-性腺轴。位于禽类眼球上的视网膜感受器接受外界光线产生光信号,传递至下丘脑[2],进而作用于下丘脑-垂体-性腺轴[3],引起家禽体内促黄体素(luteinizing hormone,LH)和促卵泡素(follicle- stimulating hormone,FSH)浓度变化,影响家禽生殖系统发育和繁殖活动[4-8]。人类视网膜上存在着对蓝光、绿光和红光敏感的三种视锥细胞[9],而禽类还具有对415 nm光线敏感的视锥细胞[3],因此禽类与人对同一光源的感知可能不同。家禽的很多生命活动如生长和采食等,都与视网膜的敏感性密切相关[5]。
禽类对光的感受并不局限于视网膜,丘脑深层同样存在着光信号接收器。来自外界的光可以透过颅骨,直接到达位于下丘脑上的光感受器,从而将外界光信号转化为神经冲动,进而作用于下丘脑-垂体-性腺轴[3, 10-11]。刺激丘脑深层部位能够引起生殖机能的改变[12-13]。MOBARKEY等[14]研究14L:10D对照组、红光组和绿光组对肉种鸡分子水平的影响,发现红光组的促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)的mRNA表达量显著高于对照和绿光组,红光组和对照组LH的mRNA表达量显著高于绿光组。利用红光能透过颅骨刺激视网膜外感受器的特性。提示光照刺激鸡的视网膜外感受器是调控繁殖性能的重要途径之一,其作用甚至高于光线刺激视网膜感受器。在其他禽类中也有相关发现,如盲眼麻雀的睾丸发育情况与正常个体无显著差异,即视网膜外受体可以介导性腺对光照刺激的应答[15]。
松果体被认为是家禽的“第三只眼”[16],由光感细胞、神经节细胞和支持细胞构成。松果体细胞被认为与视网膜细胞具有共同的起源[17]。松果体作为家禽的光感受器尚存在争议。一般认为,松果体能感受光的信号并作出反应,由松果体分泌的褪黑激素(melatonin,MT)受光照的制约。光照明期时,MT分泌减少,暗期时,MT分泌增加[18]。MT具有抑制促性腺激素释放的功能,性腺的发育和功能活动因此受到抑制。光照刺激鸡视网膜感受器会导致视网膜处5-羟色胺分泌增加,5-羟色胺是MT的前体物质,经一系列酶的催化作用后产生MT,进而导致相关生殖激素基因mRNA表达量下调和激素分泌下降[19]。除此之外,四季更替,MT分泌水平也相应变化,对调节禽类行为的季节性变化具有重要意义[20]。
从单细胞到人类,所有生命活动均按照一定规律运行,且具有周期性活动现象,这种现象称之为生物节律[21-22]。视网膜上黑视蛋白感受外界明暗变化后,由视网膜神经节细胞将信息通过视网膜下丘脑束传递至视交叉上核(superchiasmatic nucleus,SCN),SCN通过调控生物钟基因的周期性振荡表达产生生物节律信号。最终,经节律输出系统传递至外周的生物节律信号,与外周器官内源性生物钟系统协同作用维持机体的生理活动,包括对体能变化、精神活动和情绪波动等影响[23-27]。可见各类生理功能的节律在于保证机体健康的生命活动[28]。光照节律包括对光照和黑暗时长的控制,促进机体生物节律的形成。种鸡和蛋鸡的生产周期较长,不同生长阶段的生理特点差异较大。所以,鸡在不同的生长阶段采用不同的光照节律。
鸡在育成期阶段,生长迅速、发育旺盛。育成阶段的质量将间接影响产蛋期繁殖性能[29]。生产中,人们普遍关注体重和脂肪沉积等是否达标,而易忽视光照变化对性腺发育的影响。由于鸡12周龄后性腺发育很快,并对光照时间长短反应敏感,如不限制光照,会引起性早熟等情况[30]。
半开放鸡舍饲养时,鸡逆季、顺季饲养所采用的渐增或渐减光照模式会导致两者性成熟时间相差一个月。研究表明,与渐增或渐减的自然光照相比,AA种鸡育成期采取8或9 h的恒定光照能提高受精率[31]。IDRIS等[32]研究发现,Indian River鸡采用8 h的恒定光照比渐减和渐增自然光照开产早;在密闭式饲养环境中,育成期8 h恒定光照组的开产和产蛋高峰时间早于长光照组13.5 h,且产蛋率也显著提高。吕锦芳等[33-34]发现,蛋鸡育成期接受13 h长光照处理,虽然19周龄时的卵巢指数显著高于8 h的短光照组,但开产后的鸡群-Ⅰ的mRNA表达丰度显著低于育成期短光照组。黄羽种鸡的研究中也发现,育成期采取恒定8 h光照,其产蛋后期的、和,以及LH和FSH激素水平均高于10 h或12 h光照,且恒定8 h光照的产蛋高峰维持时间更长[35]。蛋鸡育成期保持6或8 h恒定光照,可使开产后产蛋率上升更快[36]。但PETER等[37]研究发现,白来航鸡育成期6、9和12 h恒定光照并不影响性成熟时间和产蛋量。综上,育成期光照时长低于6 h或高于10 h均会影响鸡的产蛋潜力。因此,应保证育成鸡维持8—9 h的光照时长以保证体况和体重在性成熟时达标,提高繁殖潜力。
很多情况下,公母鸡混养会导致公鸡无法接受到最适宜的光照节律。随着精确管理和生产,种公鸡逐步被单笼饲养,光照对种公鸡繁殖性能的影响也逐渐受到重视[38]。研究表明,肉用种公鸡在育成期每天接受4或8 h恒定光照,其性成熟最快,睾丸重和精液量也优于其他处理组[39]。YALCIN等[40]研究发现,4 h恒定光照会延迟种公鸡性成熟,但对精液量和精子密度无显著影响。SUN等[41]研究发现,黄羽肉种鸡在先减后增的变程光照节律下饲养,其睾丸重、鸡冠大小和睾酮水平都显著高于连续光照和间歇光照节律。
上述研究表明,育成期恒定短光照是保证鸡对光照刺激具有良好反应能力的基础。同时,公母鸡的生理结构和种用方向不同,育成期饲养管理中的光环境控制应差异化对待。
光照不仅使鸡看到饮水和饲料,保障其生长发育,而且对繁殖有决定性的刺激作用,即对鸡的性成熟、排卵和产蛋等均有重要影响。在现代集约化饲养中,通过人为控光,能提高群体开产整齐度,延长产蛋高峰期。因此,光照刺激周龄的选择,以及产蛋期光照时长和强度控制,是产蛋鸡饲养管理的关键技术点,相关研究也较多,尤其是肉种鸡。
2.2.1 光照刺激周龄 光照刺激必须在恰当的阶段实施才可以有效发挥作用。DUNN等[42]研究发现,种鸡3周龄时下丘脑对光照刺激具有反应。若种鸡缺少光照刺激则会显著延迟性成熟和开产[43]。IDRIS等[32]研究光照刺激时间对Indian River种鸡的影响,发现与14和16周龄光照刺激相比,18周龄接受光照刺激的种鸡,开产日龄虽晚于各组,但产蛋数最多。YUAN等[44]也发现,20周龄光照刺激的Acian Farm肉种鸡开产日龄显著晚于14和17周龄,但各组间产蛋数无显著差异。石雷等[45]发现AA种鸡在16周龄光照刺激时开产日龄显著延迟;随着光照刺激时间的推迟,光照刺激至开产的间隔时间逐渐缩短。RENEMA等[46-49]在Starbro、Hubbard和Ross肉种鸡上的研究结果与此一致。ZUIDHOF等[50]研究发现,Ross和Hubbard种鸡18周龄光刺激组的产蛋数虽显著高于22周龄光刺激组,但其小蛋数目较多,合格蛋数低于22周龄光刺激组,且22周龄光照刺激的孵化率高于18周龄。同时,RENEMA等[46]发现,18周龄光照刺激还会导致群体等级制度增强,使鸡处于不稳定的排卵状态。SILVERSIDES等[51]在蛋种鸡中发现,20周龄光刺激组的开产时间晚于18周龄。
种鸡体成熟前进行过早的光照刺激致使体况发育停止,换为产蛋期饲料后营养用于生产储备和脂肪沉积,从而导致性腺发育和雌激素增长缓慢。虽个别体况较佳,性成熟提前,但大部分个体体况变差,致使开产整齐度变差。光照刺激数周后,即使达到体成熟,鸡群也处于光失敏状态,即对光照刺激不再具有反应能力,因此性成熟明显延迟。YUAN等[44]研究早期光照和体重对种鸡生产性能的影响,发现体重偏大的种鸡,早光照刺激会促进开产,但没有提高群体总产蛋数。其原因主要是肉种鸡限饲过程中,体重偏大的鸡群器官发育也较快,光照刺激后有利于生殖器官的发育,但超重的体况和过多的腹脂对繁殖性能产生不利影响。ROBINSON等[47]研究发现,光照刺激对种鸡性成熟前的卵巢重、肝脏重、腹脂重和胸肌重影响显著,但该差异在性成熟后即消失。MELNYCHUK等[52]研究发现,在24周龄接受光照刺激的Cobb种鸡性成熟时的输卵管和肝脏更重,腹脂较多。但ROBINSON等[53]以Ross和Hubbard种鸡为对象,发现光照刺激起始时间(18周龄和22周龄)对性成熟时的胸肌重没有显著影响,且18周龄光照刺激组的输卵管重和卵巢重也显著大于22周龄。
有研究表明,提前性成熟会导致蛋壳质量下降以及闭锁卵泡发生率增加,排卵间隔时间延长,从而导致大黄卵泡数减少[54-55]。RENEMA等[46]研究发现,22周龄光刺激组的初产蛋重显著高于18周龄。光照刺激时间对鸡产蛋中后期的平均蛋重影响较小[44, 47, 49]。SILVERSIDES等[51]研究发现,蛋鸡20周龄光刺激的蛋壳重高于18周龄。ZUIDHOF等[50]以Ross和Hubbard种鸡为对象,发现光照刺激时间对产蛋初期软壳蛋数和蛋壳畸形蛋数存在影响。
生产中,除了保证鸡的体重在性成熟时达标外,胸肌、腹脂和肝脏重量等也作为鸡体成熟的重要指标。光照刺激前均需测量胸肌发育和腹脂沉积,进而估计鸡群体况发育。从卵黄的形成和主要成分来看,卵黄沉积主要在排卵前的10 d左右进行。高产鸡每产一枚蛋,肝脏每天需要合成19 g卵黄前体,卵黄前体经血液输送到发育的卵泡,通过特异性受体介导在卵黄中。卵黄中65%的固体成分为脂蛋白复合体(即极低密度脂蛋白),脂蛋白复合体中12%是蛋白质,而88%为脂类,较高的可以随时动用的脂类也是母鸡沉积一定量体脂有利于开产和持续产蛋的原因[43, 56, 57]。RENENMA等[46]发现,种鸡22周龄光刺激的腹脂率显著高于18周龄。但PISHNAMAZI等[49]和ROBINSON等[47, 58]并未发现光照刺激时间对鸡腹脂率存在影响。对于黄羽种鸡的光照刺激时间的相关研究还鲜有报道,生产中多参照蛋鸡的光照刺激时间,即在18周龄进行光照刺激。
种母鸡通过光照可以提早性成熟,但生产实践中需要慎重使用,因为适时和整齐开产才会利于群体整体繁殖性能的发挥,以及便于管理。
种公鸡性早熟在实际生产中具有重要作用,尤其是在人工输精时可以获得更多的精液。TYLER等[59]研究Ross种公鸡分别在8、11、14、17、21和23周龄光照刺激对其繁殖性能的影响,发现各处理性成熟时间无显著差异,第一次产生精液的时间均在164—172 日龄;14周龄后,公鸡对光照刺激存在反应,且随着光照刺激的推迟,睾丸发育也推迟,这一趋势与母鸡相似,但公鸡的性成熟时间早于母鸡。研究表明,种公鸡8周龄接受光照刺激,能够产生精液并有鸡冠发育的公鸡,与没有发现相关变化的公鸡对比,其后代母鸡的性成熟时间更早,后代公鸡的睾丸发育更快,且这一效果在肉种鸡中更为明显[60]。实际生产中,种用公母鸡多混养接受相同光照,以至于公鸡繁殖性能的光调控机制和应用研究相对较少。随着人工输精、精液稀释和存储以及种公鸡隔代利用等技术的应用和发展,有必要对公鸡的光照调控机制和相关技术开展系统性研究。
2.2.2 光照时长 鸡进入产蛋期后,光照节律则由恒定短光照转变为恒定长光照。长光照的时长选择也是提高鸡繁殖性能的关键控制点之一。将鸡从8L:16D的光照转变为10.5L: 13.5D或12.75L:11.25D的光照,血浆LH均会成比例增加[61]。LEWIS等[62]研究Cobb种鸡产蛋期光照时长与LH响应曲线,发现在20周龄时给予9.5 h的光照刺激,LH水平开始上升;每天11.5 h光照时长的LH水平上升速度最快,13 h时曲线趋于平稳。而GOW等[63]研究发现,光照刺激不会影响血浆LH的变化。黄仁录等[64]以海兰褐蛋鸡为研究对象,发现激素分泌规律性并不和光照周期(时长)呈正相关,11L:13D光照组在产蛋高峰期FSH和LH峰值含量最高;在产蛋期阶段,随着光照时长增加,血糖浓度也增高[65];17L:7D的长光照使鸡群体内蛋白合成代谢旺盛,增强机体免疫功能,有利于鸡群产蛋后期生产性能的发挥[66]。王翠菊等[67]研究发现,海兰褐蛋鸡产蛋期维持13L:11D光照,其产蛋后期的子宫部皱襞长而复杂,分布较紧密,输卵管重最大。潘栋等[68]研究发现,海兰褐鸡产蛋期17L:7D光照组的产蛋率最高。CHEN等[69]研究发现,蛋鸡产蛋期17L:7D光照组的开产日龄早于11L:13D光照组5.7 d,但过长或过短光照时长都会一定程度限制卵巢发育。
肉种鸡与蛋鸡体况差异较大,且肉种鸡多存在光照不应性情况,因此肉种鸡产蛋期光照时长短于蛋鸡。LEWIS等[70]发现,Ross种鸡产蛋期14 h光照时长的性成熟早于11 h光照时长,破蛋率也较低,且各处理产蛋量差异不显著。LEWIS等[71]以Cobb肉种鸡为研究对象,发现产蛋期光照时长≤14 h时,随着光照时长增加,开产时间提前,产蛋量增加。不同增光方式对肉种鸡生产性能没有显著影响;与光照时长11、12和14 h相比,产蛋期维持13 h光照时长,其饲料转化率最高,破蛋和脏蛋率低[72]。
Floyd等[73]研究发现,Cobb种公鸡20周龄后维持8、9、9.5、10、10.5、11、11.5、12、12.5、13、14或18 h光照时长对性成熟、鸡冠面积和正常精子活力均无显著影响,但维持8—11 h区间的光照时长,其精子密度最高,随着光照时长的增加,精子浓度逐渐降低;睾丸重量随着光照时长的增加也逐渐降低。
综上,母鸡产蛋期需要较长的光照时间以促进其产蛋,而种公鸡采取同母鸡产蛋期一致的光照时长可能会降低精液品质,种公鸡或许并不适合超过13 h的光照管理。
在种鸡和蛋鸡生产中,通常采用24 h光照制度,即一昼夜光照与黑暗各占一定时数所形成的明暗周期。长于或短于24 h的光照制度,称为非自然光照节律。研究最多的是27或28 h光照制度。以往数据显示,鸡的排卵-产蛋周期为25—27 h。在一个连产序列中,产蛋时间会逐步后移,因为产蛋时间上的严格偏好,当产蛋时间后移至下午时,就会造成连产的中断,在一天或者数天的间歇后再开始一个新的产蛋序列[6]。非自然光照节律的提出,使母鸡的繁殖节律在此光照节律下能够得到较好的同步,更接近蛋的形成时间。蛋在输卵管内的停留时间延长会提高蛋重,减少破损蛋和畸形蛋的发生率[74]。PROUDFOOT[75]研究发现,27和24 h两种光照节律及其对应的间歇光照制度对种鸡性成熟、产蛋数和饲料转化率没有影响,但27 h光照节律时形成的蛋偏大,且地板蛋较多。HAWES等[76]研究发现,蛋鸡采用26 h光照节律的产蛋率比24 h光照节律低,但能增加蛋重。SPIES等[77]以Shaver Starbro种鸡为对象,发现28 h光照节律在产蛋前期(30周龄)产蛋间隔时间更长,蛋重更大,蛋壳重量显著增加;24 h光照制度能够增加卵巢和输卵管重量,产生更多的大卵泡;两种光照节律在产蛋数方面没有差异。WATERS等[78]研究发现,自然与非自然光照节律对Warren鸡的蛋重无显著影响。BOERSMA等[79]发现种鸡产蛋后期(47周龄)采用28 h光照节律虽然能增加蛋重,但产蛋量下降快,合格蛋降低,蛋壳质量下降。
综上,非自然光照节律可以提高蛋重,减少破蛋率和畸形率,但蛋重的增加可能多由于蛋壳重量增加,而且28 h光照节律可能导致后期产蛋数下降。非自然光照节律不符合欧盟规定动物福利标准[80],与饲养人员的正常作息时间不一致,在实际生产中并未广泛应用,但是研究非自然光照节律对了解家禽的生物节律具有一定的科学意义。
光照不应性指家禽对最初诱导或维持其生产性能的光照节律无反应的特性[81]。随着光照的延长,光子能传递到神经系统的信号逐渐减少,最后禽类不能维持最高浓度的促性腺激素水平。在大多数鸡中,光照不应性的主要特点是鸡在最初产蛋的12—15个月期间产蛋量逐渐减少。随着产蛋的减少,垂体逐渐不能对GnRH发生反应而释放LH或FSH,有时促性腺激素也会降低到不能维持性腺机能的程度,卵巢在光照刺激后10周左右退化[82-84]。
鸡光照管理较为复杂,母鸡会对长白天的光照反应变弱。光照不应性晚于光照刺激出现,会使鸡产蛋量逐步下降。而光照不应性的早晚与开产前光照时长紧密相关。为使鸡的光照不应性情况减缓,可首先通过较短但具有刺激作用的光照时长对开产前的鸡进行光照刺激,从而使母鸡的繁殖性能保持稳定。光照不应性这一情况多在肉种鸡中发生,而在蛋鸡生产中已经不存在[85]。因此,与蛋鸡产蛋期光照时长16 h或17 h相比,肉种鸡多为14或15 h。
光照不应性使种鸡繁殖具有季节性,在较适宜的季节孵化种蛋,最大限度提高雏禽的存活率[55, 86]。SHARP等[84]研究发现,种鸡产蛋中期再次增加光照时长对其生产性能没有影响。TYLE等[85]以种公鸡为对象,在40周龄设置不同光照时长的光照刺激,发现随着光照刺激时长增加,加速了种公鸡光照不应性的出现,睾丸重和睾酮水平也下降。出现光照不应性的母鸡一直到接受短光照处理后10—12周才可再次用光刺激,消除光照不应性。在生产实践中,多将短光照和强制换羽等措施结合,使产蛋后期母鸡下丘脑得到一定程度的休息,从而可再次接受光照刺激,出现对光照的反应[87]。
种蛋孵化期的环境控制对胚胎发育至关重要。孵化期光照条件通常不被重视,而越来越多的研究指出,孵化期光照刺激对于种蛋的孵化性能以及雏鸡的生产性能有一定影响。发育中的鸡胚呈蜷缩状,头转向一侧,喙埋入翼下,一侧眼睛对光照条件更为敏感,从而导致胚胎的不对称发育[88]。孵化期光照刺激能够提高种蛋的孵化率[89-90]和出雏后的应激能力[9],且胚胎期绿光刺激能够显著提高肉鸡和火鸡的肌肉增长速度[91-94]。但也有研究发现,鸡孵化期间光照会对其产生负面影响。TAMIMIE等[95]发现白来航种蛋孵化期间给予光照会增加死胚率、延长出雏时间和降低出雏重。AIGEGIL等[96]发现,孵化期间白光刺激洛岛红鸡会提高死胚率,导致胚胎发育延缓,肝脏肿大。ARCHER等[97]研究发现,孵化期间给予肉鸡光照会造成眼睛重量降低和不对称性增加。因此,关于孵化期间光照刺激效应的研究结果尚不一致,有待进一步探索。
作为家禽生长繁殖极为重要的环境调节因素,光照方面的研究仍需重视。光调控技术对各阶段产蛋鸡均有显著影响,生产上已被广泛应用,但是具体作用机制尚不明确,如性别对光照环境变化是否存在差异化反应,各个光感受器的在介导光-繁殖生理反应过程中的协同和拮抗关系,以及光环境引起的表观遗传学修饰及其可遗传性尚有待于进一步深入研究。
[1] DAWSON A, KING V M, BENTLEY G E, BALL G F. Photoperiodic control of seasonality in birds., 2001, 16(4): 365-380.
[2] 陈耀星, 王子旭, 内藤顺平, 鸡投射视顶盖视网膜节细胞的形态学分类. 解剖学报, 2002,33(1): 47-50.
CHEN Y X, WANG Z X, MEITENG S G. Morphological classification of retinotectal ganglion cells in the chick retina., 2002, 33(1): 47-50. (in Chinese)
[3] LEWIS P D, Morris T R, Poultry and colored light., 2000, 56(3): 189-207.
[4] RENEMA R A, SIKUR V R, ROBINSON F E, KORVER D R, ZUIDHOF M J. Effects of Nutrient Density and Age at Photostimulation on Carcass Traits and Reproductive Efficiency in Fast- and Slow-Feathering Turkey Hens., 2008, 87(9): 1897-1908.
[5] LEWIS P D, CIACCIARIELLO M, CICCONE N A, SHARP P J, GOUS R M. Lighting regimens and plasma LH and FSH in broiler breeders., 2005, 46(3): 349-353.
[6] MOORE R Y, SPEH J C, LEAK R K. Suprachiasmatic nucleus organization., 2002, 309(1): 89-98.
[7] GILLETTE M U, TISCHKAU S A. Suprachiasmatic nucleus: the brain's circadian clock., 1999, 54(1): 33-58.
[8] SURBHI, KUMAR V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology.2015, 220: 13-11.
[9] BOWMAKER J K, DARTNALL H J. Visual pigments of rods and cones in a human retina., 1980, 298(1): 501-511.
[10] KUENZEL W J. The search for deep encephalic photoreceptors within the avian brain, using gonadal development as a primary indicator., 1993, 72(5): 959-967.
[11] HARRISON P C. Extraretinal photocontrol of reproductive responses of Leghorn hens to photoperiods of different length and spectrum., 1972, 51(6): 2060-2064.
[12] OLIVER J, BAYLÉ J D. Brain photoreceptors for the photo-induced testicular response in birds., 1982, 38(9): 1021-1029.
[13] SALDANHA C J, SILVERMAN A J, SILVER R. Direct innervation of GnRH neurons by encephalic photoreceptors in birds., 2001, 16(1): 39-49.
[14] MOBARKEY N, AVITAL N, HEIBLUM R,ROZENBOIM I. The role of retinal and extra-retinal photostimulation in reproductive activity in broiler breeder hens., 2010, 38(4): 235-243.
[15] UNDERWOOD H, MENAKER M. Photoperiodically significant photoreception in sparrows: is the retina involved?, 1970, 167(3916): 298-301.
[16] RATHINAM T, KUENZEL W J. Attenuation of gonadal response to photostimulation following ablation of neurons in the lateral septal organ of chicks., 2005, 64(5): 455-461.
[17] KLEIN D C. The 2004 Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland a tale of conflict and resolution., 2004, 19(4): 264-279.
[18] BINKLEY S, STEPHENS J L, RIEBMAN J B, REILLY K B. Regulation of pineal rhythms in chickens: photoperiod and dark-time sensitivity., 1977, 32(4): 411-416.
[19] MOBARKEY N, AVITAL N, HEIBLUM R, ROZENBOIM I. The effect of parachlorophenylalanine and active immunization against vasoactive intestinal peptide on reproductive activities of broiler breeder hens photostimulated with green light., 2013, 88(4): 1-7.
[20] BENTLEY G E, VAN'T HOF T J, BALL G F. Seasonal neuroplasticity in the songbird telencephalon: a role for melatonin., 1999, 96(8): 4674-4679.
[21] 王艳利, 曲丽娜, 李莹辉. 生物节律基因非编码RNA调控机制. 中国生物化学与分子生物学报, 2016, 32(4): 353-358.
WANG Y L, QU L N, LI Y H. Regulation of circadian gene by non-coding RNAs., 2016, 32(4): 353-358. (in Chinese)
[22] 邢陈, 顾晔, 宋伦. 昼夜节律在代谢调控中的作用. 军事医学, 2017, 41(7): 618-622.
XING C, GU Y, SONG L. Function of circadian rhythms in regulation of metabolism., 2017, 41(7): 618-622. (in Chinese)
[23] 韩芳. 昼夜节律性睡眠障碍. 生命科学, 2015, 27(11): 1448-1454.
HAN F. Circadian rhythm sleep disorders., 2015, 27(11): 1448-1454. (in Chinese)
[24] HASTINGS M H, REDDY A B, MAYWOOD E S. A clockwork web: circadian timing in brain and periphery, in health and disease., 2003, 4(8): 649-661.
[25] PANDA S. Multiple photopigments entrain the mammalian circadian oscillator., 2007, 53(5): 619-621.
[26] ALBRECHT U. Timing to perfection: the biology of central and peripheral circadian clocks., 2012, 74(2): 246-260.
[27] MOHAWK J A, GREEN C B, TAKAHASHI J S. Central and peripheral circadian clocks in mammals., 2012, 35(1): 445-462.
[28] 陈思禹, 钱近春, 刘畅. 代谢生物钟研究进展. 生命科学, 2015(11): 1409-1417.
CHEN S Y, QIAN J C, LIU C. The molecular mechanism for the integration of circadian clock and energy metabolism., 2015, 27(11): 1409-1417. (in Chinese)
[29] 杨宁. 家禽生产学. 北京: 中国农业出版社, 2002.
YANG N.. Beijing: China Agriculture Press, 2002. (in Chinese)
[30] Hassanzadeh M, Fard M H, Buyse J, DECUYPERE E. Beneficial effects of alternative lighting schedules on the incidence of ascites and on metabolic parameters of broiler chickens., 2003, 51(4): 513-520.
[31] BRAKE J, GARLICH J D, BAUGHMAN G R. Effects of lighting program during the growing period and dietary fat during the laying period on broiler breeder performance., 1989, 68(9): 1185-1192.
[32] IDRIS A A, ROBBINS K R. Light and feed management of broiler breeders reared under short versus natural day length., 1994, 73(5): 603-609.
[33] 吕锦芳, 饶开晴, 姜锦鹏, 倪迎冬, 顾有方, 宁康健, 应如海, 周玉刚, 许百年. 光周期对蛋鸡GnRH-I,GnRH-Ra mRNA表达和卵巢发育的影响. 激光生物学报, 2015, 24(3): 251-256.
LÜ J F, RAO K Q, JIANG J P, NI Y D, GU Y F, NING K J, YING R H, ZHOU Y G, XU B N. Effects of photoperiods on GnRH-I, GnRH-Ra mRNA expression and ovary development in layers., 2015, 24(3): 251-256. (in Chinese)
[34] 吕锦芳, 倪迎冬, 宁康健, 赵茹茜, 陈杰, 金光明. 不同光周期下ISA褐蛋鸡松果腺GnRH-Ⅰ mRNA表达的变化. 中国兽医学报, 2009(3): 335-338.
LÜ J F, NI Y D, NING K J, ZHAO R X, CHEN J, JIN G M. Change of GnRH-I mRNA expression in pineal gland for ISA brown layers at different photoperiods., 2009(3): 335-338. (in Chinese)
[35] Han S, Wang Y, Liu L, Li D, Liu Z, Shen X, Xu H, Zhao X, Zhu Q, Yin H. Influence of three lighting regimes during ten weeks growth phase on laying performance, plasma levels- and tissue specific gene expression of reproductive hormones in Pengxian yellow pullets., 2017, 12(5): 1-11.
[36] LEWIS P D, CASTON L, LEESON S. Rearing photoperiod and abrupt versus gradual photostimulation for egg-type pullets., 2007, 48(3): 276-283.
[37] LEWIS P D, CASTON L, LEESON S. Influence of rearing photoperiod and age and mode of transfer to final photoperiod on performance in egg-type pullets., 2009, 8(1): 7-13.
[38] 孙研研, 陈继兰. 种公禽繁殖系统对光要素的应答机制研究进展. 中国畜牧兽医, 2017, 44(9): 2692-2698.
SUN Y Y, CHEN J L. Research progress on mechanisms of lighting affecting the reproduction of male poultry breeders., 2017, 44(9): 2692-2698. (in Chinese)
[39] RENDEN J A, OATES S S, WEST M S. Performance of two male broiler breeder strains raised and maintained on various constant photoschedules., 1991, 70(7): 1602-1609.
[40] YALCIN S, MCDANIEL G R, WONGVALLE J. Effect of preproduction lighting regimes on reproductive performance of broiler breeders., 1993, 2(2): 51-54.
[41] SUN Y Y, TANG S, CHEN Y, CHEN J L. Effects of light regimen and nutrient density on growth performance, carcass traits, meat quality, and health of slow-growing broiler chickens., 2017, 198: 201-208.
[42] DUNN I C, SHARP P J, HOCKING P M. Effects of interactions between photostimulation, dietary restriction and dietary maize oil dilution on plasma LH and ovarian and oviduct weights in broiler breeder females during rearing., 1990, 31(2): 415-427.
[43] LUPICKI, EWA M. Ovarian morpohology and steroidogenesis in domestic fowl (Gallus domesticus) [microform]: effects of aging, strain, photostimulation program and level of feeding., 1994.
[44] YUAN T, LIEN R J, MCDANIEL G R. Effects of increased rearing period body weights and early photostimulation on broiler breeder egg production., 1994, 73(6): 792-800.
[45] 石雷, 孙研研, 许红, 刘一帆, 徐松山, 李云雷, 叶建华, 陈超, 李冬立, 陈余, 郭艳丽, 陈继兰. 光照刺激时间对肉种鸡性成熟的影响. 畜牧兽医学报, 2017, 48(11): 2107-2114.
SHI L, SUN Y Y, XU H, LIU Y F, XU S S, LI Y L, YE J H, CHEN C, LI D L, CHEN Y, GUO Y L, CHEN J L. Effect of age at photostimulation on sexual maturation in broiler breeders., 2017, 48(11): 2107-2114. (in Chinese)
[46] RENEMA R A, ROBINSON F E, ZUIDHOF M T, Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 2. Sexual maturation., 2007, 86(10): 2267-2277.
[47] ROBINSON F E WAUTIER T A HARDIN R T, ROBINSON N A, WILSON J L, NEWCOMBE M, MCKAY R I. Effects of age at photostimulation on reproductive efficiency and carcass characteristics. 1. Broiler breeder hens., 1996, 3(76): 275-282.
[48] LEWIS P D, CIACCIARIELLO M, BACKHOUSE D, GOUS R M. Effect of age and body weight at photostimulation on the sexual maturation of broiler breeder pullets transferred from 8L:16D to 16L:8D., 2007, 48(5): 601-608.
[49] PISHNAMAZI A, RENEMA R A, ZUIDHOF M J, ROBINSON F. Effect of age at photostimulation on sexual maturation in broiler breeder pullets., 2014, 93(5): 1274-1281.
[50] ZUIDHOF M J, RENEMA R A, ROBINSON F E. Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 3. Reproductive efficiency., 2007, 86(10): 2278-2286.
[51] SILVERSIDES F G, KORVER D R, BUDGELL K L. Effect of strain of layer and age at photostimulation on egg production, egg quality, and bone strength., 2006, 85(7): 1136-1144.
[52] MELNYCHUK V L, KIRBY J D, KIRBY Y K, EMMERSON D A, ANTHONY N B. Effect of strain, feed allocation program, and age at photostimulation on reproductive development and carcass characteristics of broiler breeder hens., 2004, 83(11): 1861-1867.
[53] ROBINSON F E, ZUIDHOF M J, RENEMA R A. Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 1. Pullet growth and development., 2007, 86(10): 2256-2266.
[54] MORRIS T R, PERRY G C. A model for predicting the age at sexual maturity for growing pullets of layer strains given a single change in photoperiod., 2002, 138(4): 441-458.
[55] GOUS N C T R M, GOUS A R M. Photorefractoriness in avian species - could this be eliminated in broiler breeders?., 2012, 68(4): 645-650.
[56] JOSEPH N S, ROBINSON F E, RENEMA R A, ZUIDHOF M J. Responses of two strains of female broiler breeders to a midcycle increase in photoperiod., 2002, 81(6): 745-754.
[57] BORNSTEIN S, PLAVNIK I, LEV Y, Body weight and/or fatness as potential determinants of the onset of egg production in broiler breeder hens., 1984, 25(3): 323-341.
[58] ROBINSON F E, ZUIDHOF M J, RENEMA R A. Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 1. Pullet growth and development., 2007, 86(10): 2256-2266.
[59] TYLER N C, GOUS R M. The effect of age at photostimulation of male broiler breeders on testes growth and the attainment of sexual maturity., 2009, 39(3): 169-175.
[60] TYLER N C, GOUS R M. Selection for early response to photostimulation in broiler breeders., 2011, 52(4): 517-522.
[61] FOLLETT B K, FOSTER R G, NICHOLLS T J. Photoperiodism in birds., 1985, 117: 93-105.
[62] LEWIS P D, TYLER N C, GOUS R M, DUNN I C, SHARP P J. Photoperiodic response curves for plasma LH concentrations and age at first egg in female broiler breeders., 2008, 109(1-4): 274-286.
[63] GOW C B, SHARP P J, CARTER N B, YOO B H. Comparisons of time intervals and plasma LH concentrations during the ovulatory cycle of broiler breeder hens maintained under either a 24 h light:dark cycle or continuous light., 1987, 28(1): 129-137.
[64] 黄仁录, 陈辉, 邸科前, 张竞乾, 李军乔, 张振红, 潘栋. 不同光照周期对蛋鸡高峰期血液激素水平的影响. 畜牧兽医学报, 2008(3): 368-371.
HUANG R L, CHEN H, DI K Q, ZHANG J Q, LI J Q, ZHANG Z H, PAN D. Effect of different photoperiods on blood hormone of laying hens., 2008(3): 368-371. (in Chinese)
[65] 黄仁录, 陈辉, 潘栋, 韩爱云, 邸科前, 郭云霞, 张振红. 不同光照周期对蛋鸡高峰期血液生化指标的影响. 华北农学报, 2007(03): 168-171.
HUANG R L, CHEN H, PAN D, HAN A Y, DI K Q, GUO Y X, ZHANG Z H. Effect of different photoperiods on blood biochemical parameters of hens., 2007(03): 168-171. (in Chinese)
[66] 黄仁录, 陈辉, 潘栋, 邸科前, 侯永刚. 不同光增方式和周期对蛋鸡蛋品质和血液生化指标的影响. 中国畜牧杂志, 2007, 43(13): 52-55.
HUANG R L, CHEN H, PAN D, DI K Q, HOU Y G. Effect of different lighting increscent and photoperiod on egg characters and blood biochemical parameters of laying hen., 2007, 43(13): 52-55. (in Chinese)
[67] 王翠菊, 陈辉, 侯永刚, 王飞, 王洪芳, 黄仁录. 不同光照周期下鸡输卵管比较形态学及蛋品质的研究. 河北农业大学学报. 2009, 32(04): 88-91.
WANG C J, CHEN H, HOU Y G, WANG F, WANG H F, HUANG R L. Comparative morphological study on oviduct and egg quality in different photoperiod., 2009, 32(04): 88-91. (in Chinese)
[68] 潘栋. 光照周期对蛋鸡卵巢输卵管形态、生产性能及血液生化指标的影响[D]. 保定: 河北农业大学, 2008.
PAN D. Effect of photoperiod on procreation morphology, production and haemal biochemical parameters[D]. Baoding: Agricultural University of Hebei, 2008. (in Chinese)
[69] CHEN H, HUANG R L, ZHANG H X, DI K Q, PAN D, HOU Y G. Effects of Photoperiod on Ovarian Morphology and Carcass Traits at Sexual Maturity in Pullets., 2007, 86(5): 917-920.
[70] LEWIS P D, DANISMAN R, GOUS R M. Photoperiods for broiler breeder females during the laying period., 2010, 89(1): 108-114.
[71] LEWIS P D, GOUS R M. Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders., 2006, 85(3): 377-383.
[72] LEWIS P D, GOUS R M. Constant and changing photoperiods in the laying period for broiler breeders allowed normal or accelerated growth during the rearing period., 2006, 85(2): 321-325.
[73] FLOYD M H, TYLER N C. Photostimulation of male broiler breeders to different photoperiods., 2011, 41(2): 146-155.
[74] YANNAKOPOULOS A L. Effect of an ahemeral light cycle on yolk weight and relationship between egg weight and yolk weight late in the pullet year., 1985, 64(8): 1596-1598.
[75] PROUDFOOT F G. The effects of dietary protein levels, ahemeral light and dark cycles, and intermittent photoperiods on the performance of chicken broiler parent genotypes., 1980, 59(6): 1258-1267.
[76] HAWES R O, LAKSHMANAN N, KLING L J. Effect of ahemeral light:dark cycles on egg production in early photostimulated brown-egg pullets., 1991, 70(7): 1481-1486.
[77] SPIES A A, ROBINSON F E, RENEMA R A, FEDDES J J, ZUIDHOF M J, FITZSIMMONS R C. The effects of body weight and long ahemeral days on early production parameters and morphological characteristics of broiler breeder hens., 2000, 79(8): 1094-1100.
[78] WATERS C J, ROSE S P, BAMPTON P R. Production responses of laying hens to 28 h bright:dim light cycles using different light intensity ratios and a 24 h temperature regimen., 1987, 28(2): 207-212.
[79] BOERSMA S I, ROBINSON F E, RENEMA R A. The effect of twenty-eight-hour ahemeral day lengths on carcass and reproductive characteristics of broiler breeder hens late in lay., 2002, 81(6): 760-766.
[80] SANTÉ O M D L, L'ALIMENTATION U P. laying down minimum rules for the protection of chickens kept for meat production., 2007, 182(7): 19-28.
[81] TYLER N C, GOUS R M. Photorefractoriness in avian species – could this be eliminated in broiler breeders?, 2012, 68(04): 645-650.
[82] LEWIS P D, GOUS R M, MORRIS T R. Model to predict age at sexual maturity in broiler breeders given a single increment in photoperiod., 2007, 48(5): 625-634.
[83] FOLLETT B K, ROBINSON J E. Photoperiod and gonadotrophin secretion in birds., 1980, 59: 39-61.
[84] SHARP P J, DUNN I C, CEROLINI S. Neuroendocrine control of reduced persistence of egg-laying in domestic hens: evidence for the development of photorefractoriness., 1992, 94(1): 221-235.
[85] TYLER N C, LEWIS P D, GOUS R M. Reproductive status in broiler breeder males is minimally affected by a mid-cycle increase in photoperiod., 2011, 52(1): 140-145.
[86] SOCKMAN K W, WILLIAMS T D, DAWSON A, BALL G F. Prior experience with photostimulation enhances photo-induced reproductive development in female European starlings: a possible basis for the age-related increase in avian reproductive performance., 2004, 71(3): 979-986.
[87] 赵兴绪. 家禽的繁殖调控. 北京: 中国农业出版社, 2010.
ZHAO X X.Beijing: China Agriculture Press, 2010. (in Chinese)
[88] CIACCIARIELLO M, GOUS R M. A comparison of the effects of feeding treatments and lighting on age at first egg and subsequent laying performance and carcass composition of broiler breeder hens.2010, 46(2): 246-254.
[89] HUTH J C, ARCHER G S. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth., 2015, 94(12): 3052-3058.
[90] ARCHER G S, SHIVAPRASAD H L, MENCH J A. Effect of providing light during incubation on the health, productivity, and behavior of broiler chickens., 2009, 88(1): 29-37.
[91] ROZENBOIM I, PIESTUN Y, MOBARKEY N, BARAK M, HOYZMAN A, HALEVY O. Monochromatic light stimuli during embryogenesis enhance embryo development and posthatch growth., 2004, 83(8): 1413-1419.
[92] HALEVY O, PIESTUN Y, ROZENBOIM I, YABLONKA- REUVENI Y. In ovo exposure to monochromatic green light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks., 2006, 290(4): 1062-1070.
[93] ZHANG L, ZHANG H J, WANG J, WU S G, QIAO X, YUE H Y, YAO J H, QI G H. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens., 2014, 8(1): 86-93.
[94] ZHANG L, ZHANG H J, QIAO X, YUE H Y, WU S G, YAO J H, QI G H. Effect of monochromatic light stimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breast muscle in male broilers., 2012, 91(4): 1026-1031.
[95] TAMIMIE H S, FOX M W. Effect of continuous and intermittent light exposure on the embryonic development of chicken eggs., 1967, 20(3): 793-796.
[96] AIGEGIL V, MURILLOFERROL N. Effects of white light on the pineal gland of the chick embryo., 1992, 7(1): 1-6.
[97] ARCHER G S, SHIVAPRASAD H L, MENCH J A. Effect of providing light during incubation on the health, productivity, and behavior of broiler chickens., 2009, 88(1): 29-37.
(责任编辑 林鉴非)
Research Progress on the Regulatory Mechanism of Lighting Schedule Affecting the Reproduction Performance of Chickens
SHI Lei, LI YunLei, SUN YanYan, CHEN JiLan
(Institute of Animal Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing 100193)
Light is an important environmental factor for the organism. Artificial lighting has been widely utilized in modern poultry production. The poultry is light-sensitive. Light regulates their growth, production, and reproduction, and therefore affects the production efficiency. Light has now been another important environmental factor for poultry industry besides temperature, humidity, and ventilation. As a classical model animal, the studies of the effects of light on chicken reproductive physiology and the underlying mechanism would be of scientific significance. The photoreception of poultry and the effects of light schedule on chicken sexual maturity and reproduction were summarized in this review. The research progress on ahemeral lighting schedule, photorefractory, and light management during eggs incubation was also included. This review aimed at providing better understanding the effect of light schedule on poultry reproduction and the underlying mechanism. Perceiving the lighting by photoreceptors including eyes (retina), the deep brain tissue, and the pineal gland, the poultry transfers the lighting information to biological signals and affect the neuroendocrine system, especially the hypothalamic-pituitary-gonadal axis to affect the growth and reproduction. The gonad of birds develops rapidly and shows sensibility for the lighting length during rearing period. Lighting length of too short or long may impede the development or accelerate sexual maturity. The studies showed that a constant light of 8 or 9 h might assure the body condition and potential of reproduction performance. The lighting schedule parameters during the laying period of poultry includes photostimulation and lighting length. Photostimulation must be applied at a right age to assure the concurrent sexual maturity. Because of limited researches in yellow-feathered laying hens, most often they follow the photostimulation strategy of high-producing hens or with slight delay of photostimulation age. Lighting length is also critical for the reproduction performance. Laying hens (breeders) need long lighting period to keep productive during the laying period. There are, however, many differences between broiler breeders and layer hens (breeders), such as body condition, feeding and physiological characters, and photo factory. Broiler breeders are suggested to have shorter lighting length (14 or 15 h) than laying hens (breeders) (16 or 17 h). The advanced sexual maturity is meaningful for poultry industry. With the development of semen dilution and preservation, and alternate use of male breeders, more and more studies are focusing on the effects of light on the reproduction of male breeders. Housing the male breeder underling the same lighting length as females after sexual maturity may reduce semen quality. It is therefore necessary to provide different lighting schedule management for male and female if condition permits. Different from the normal 24-h lighting schedule, ahemeral lighting schedule can increase egg weight, but may lessen production. It is not widely used in practice due to European standards for animal welfare regulations and its inconsistency with the regular schedule of the employee. The study of ahemeral lighting schedule is, however, still important for understanding of the biorhythm of poultry.
chicken; lighting schedule; reproduction; regulatory mechanism
2018-04-04;
2018-07-15
“十三五”国家重点研发计划(2016YFD0500502)、现代农业产业技术体系建设专项资金(CARS-40)、中国农业科学院科技创新工程(ASTIP-IAS04)
石雷,E-mail:shilei2017@foxmail.com。
陈继兰,Tel:010-62816005;E-mail:chen.jilan@163.com
10.3864/j.issn.0578-1752.2018.16.015